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One-dimensional Langevin models of fluid particle acceleration in developed turbulence
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We make a comparative analysis of some recent one-dimensional Langevin models of the acceleration of a
Lagrangian fluid particle in developed turbulent flow. The class of models characterized by random intensities
of noises~RIN models! provides a fit to the recent experimental data on the acceleration statistics. We review
the model by Laval, Dubrulle, and Nazarenko~LDN! formulated in terms of temporal velocity derivative in the
rapid distortion theory approach, and propose its extension due to the RIN framework. The fit of the contri-
bution to fourth-order moment of the acceleration is found to be better than in the other stochastic models. We
study the acceleration probability density function conditional on velocity fluctuations implied by the RIN
approach to the LDN-type model. The shapes of the conditional distributions and the conditional acceleration
variance have been found in a good agreement with the recent experimental data by Mordant, Crawford, and
Bodenschatz@Physica D~to be published!, e-print physics/0303003#.
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I. INTRODUCTION

Tsallis statistics@1# inspired formalism@2–4# was re-
cently used by Beck@5,6# to describe Lagrangian statistic
properties of developed turbulence; see also Refs.@7–9#. In
recent papers@10–12# we have made some refinements
this approach. The probability density function of a comp
nent of the Lagrangian acceleration of infinitesimal fluid p
ticle in the developed turbulent flow is found due to t
equation

P~a!5E
0

`

dbP~aub! f ~b!, ~1!

where P(aub) is a conditional probability density functio
associated with a surrogate dynamical equation, the o
dimensional Langevin equation for the accelerationa,

] ta5gF~a!1sL~ t !. ~2!

Here, ] t denotes time derivative,F(a) is the deterministic
drift force,g is the drift coefficient,s2 measures intensity o
the noise, a strength of the additive stochastic force, andL(t)
is Langevin source, ad-correlated Gaussian-white noise wi
zero mean,

^L~ t !&50, ^L~ t !L~ t8!&52d~ t2t8!, ~3!

where the averaging is made over ensemble realizations
For constant parametersg and s, this usual Langevin

model ensures that the stochastic processa(t) defined by Eq.
~2! is Markovian. The probability density functionP(aub) of
the acceleration at fixedb,

b5g/s2, ~4!
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can be found as a stationary solution of the correspond
Fokker-Planck equation

] tP~a,t !5]a@2gF~a!1s2]a#P~a,t !, ~5!

where ]a5]/]a. This equation can be derived from th
Langevin equation~2! using the noise~3! either in Stratonov-
ich or Ito interpretations. Particularly, for a linear drift forc
F(a)52a, the stationary probability density functio
] tP(a,t)50 is of a Gaussian form:

P~aub!5C~b!exp@2ba2/2#, ~6!

where C(b)5Ab/2p is a normalization constant anda
P@2`,`#. The functionf (b) entering Eq.~1! is a probabil-
ity density function arising from the assumption thatb is a
random parameter with prescribed external statistics.

While it is evident that the three-dimensional Navie
Stokes equation with ad-correlated Gaussian-white rando
forcing belongs to a class of nonlinear stochastic dynam
equations for the velocity field with which one can associ
some generalized Fokker-Planck equations, it is a theore
challenge to make a link between the Navier-Stokes equa
and surrogate one-dimensional Langevin models for ac
eration such as Eq.~2!. This model is, of course, far from
being a full model of the essential Lagrangian dynamics
fluid in the developed turbulence regime.

Review and critical analysis of the applications of vario
recent nonextensive statistics based models to the turbul
have been made by Gotoh and Kraichnan@13#. An emphasis
was made that some models lack justification of a fit fro
turbulence dynamics although being able to reproduce
perimental data to more or less accuracy. A deductive sup
from the three-dimensional Navier-Stokes equation w
stressed to be essential for the fitting procedure to be con
ered meaningful.

In contrast to the fluid particle velocity, the fluid partic
acceleration

-
.
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ai5
dv i

dt
[] tv i1vk]kv i , ~7!

which incorporates the Eulerian local acceleration and n
linear advection term, can be measured easier by using
Lagrangian framework while in the Eulerian framewo
~fixed probe! this requires measurements of the velocityv i
and temporal and spatial velocity derivatives] tv i and]kv i ,
where]k5]/]xk denotes spatial derivative in the Cartesi
laboratory frame of reference;i ,k51,2,3. In the Lagrangian
framework, the Navier-Stokes equation can be written as

ai52r21] i p1n]k
2v i1 f i , ~8!

wherer is constant fluid density,p is pressure,n is kine-
matic viscosity,v i5] txi is velocity, andf i is forcing. Here,
xi5Xi(x0k ,t) is the particle coordinate viewed as a functi
of the initial valuexi(0)5x0i and timet so that the measure
ment of time seriesxi(t) of some individual particle by using
a fine finite-difference scheme allows one to evaluate its
celeration as a function of time by using the Lagrangian
lation

ai5] t
2xi . ~9!

With the initial data pointsx0i ~Lagrangian coordinates! run-
ning over all the fluid particles one gets a Lagrangian
scription of the fluid flow. Direct analytical evaluation of th
acceleration from Eq.~8! is out of reach at present so th
one is led to estimate it in some fashion.

The model~2! belongs to a class of stochastic models
Lagrangian turbulence and deals with an evolution of
acceleration in time which in accord to the Navier-Stok
equation is driven by time derivative on the right-hand s
~rhs! of Eq. ~8!. This type of modeling corresponds to th
well-known universality ~Kolmogorov 1941, Heisenberg
1948, and Yaglom 1949! in statistically homogeneous an
isotropic developed turbulence which is expected to occu
the inertial range only statistically. Accordingly, the veloci
and acceleration become random, and one is intereste
their probability density functions, or multipoint correlatio
functions. This is in an agreement with the observed tem
rally irregular character of the velocity and acceleration o
tracer particle in high-Reynolds-number turbulent flows.
the universality, statistics of the velocity and statistics of
acceleration do not depend on statistics of the forcing
chosen initial data. In this paper we are interested in statis
of one of the acceleration components,a, so that we model
its evolution in time.

In a physical context, an essential fluid particle dynam
in the developed turbulent flow is described here in terms
a generalized Brownian-like motion, a stochastic particle
proach, taking the particle acceleration~9! as the dynamica
variable. Such models are generally based upon a hiera
of characteristic time scales in the system and naturally
ploy one-point statistical description using Langevin-ty
equation~a stochastic differential equation of first order! for
02630
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the dynamical variable, or the associated Fokker-Pla
equation~a partial differential equation! for one-point prob-
ability density function.

With the choice ofd-correlated noises such models fa
into the class of Markovian models~no memory effects at
small scales! allowing well established Fokker-Planck ap
proximation. The consideration of finite-time correlate
noises and the associated memory effects requires a de
analysis which should be made separately in each partic
case. The evolution equations are formulated and solve
the Lagrangian framework~the comoving frame!, in a purely
temporal treatment, with fluctuations being treated along
particle trajectory.

Approximation of a short-time correlated noise by t
zero-time correlated one is usually made due to the tim
scale hierarchy emerging from the general physical anal
of the system and experimental data. Under the stationa
condition, a balance between the energy injected at la
scales and the energy dissipated by viscous processe
small scales, one can try to solve the Fokker-Planck equa
to find stationary probability density function of the acce
eration,P(a). This function as well as the associated m
ments can then be compared with the experimental data
acceleration statistics. The Fokker-Planck approximation
lows one to make a link between the dynamics and the
tistical approach. In the case when stationary probability d
tribution can be found exactly one can make a furth
analysis without a dynamical reference, yet having a po
bility to extract stationary time correlators.

In contrast to the usual Brownian like motion, the flu
particle acceleration does not merely follow a random w
with a complete self-similarity at all scales. It was found
reveal a different, multiscale self-similarity, which can b
seen from wide tails of a quasi-Gaussian distribution of
experimental probability distributionP(a). This requires a
consideration of some specific Langevin-type equatio
which may include nonlinear terms, e.g., to account for t
bulent viscosity effect, and an extension of the usual prop
ties of model forces and additive and multiplicative noise

Specifically, the class of models represented by Eqs.~1!–
~6! is featured by consideration of the acceleration evolut
driven by the ‘‘forces’’ characterized by fluctuating drift co
efficient g ~or fluctuating intensity of multiplicative
d-correlated noise in a more general case! and/or fluctuating
intensity s2 of the additive noise. This was found to impl
stationary distributions of the acceleration~or velocity incre-
ments in time, for finite time lags! of a quasi-Gaussian form
with wide tails which are a classical signature of the turb
lence intermittency, a phenomenon which developed tur
lent flows exhibiting at small time scales. Earlier work o
such type of models are due to Castaing, Gagne, and Ho
ger @14#, referred to as the Castaing model, in which a lo
normal distribution of fluctuating variance of intermitte
variable was used without reference to a stochastic dyna
cal equation.

The difference from the well-known class of stochas
models withd-correlated Gaussian-white multiplicative an
additive noises which are also known to imply qua
Gaussian stationary distributions with wide tails is that o
5-2
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supposes thatintensitiesof the noises are not constant b
fluctuate at a large time scale. We refer to the models w
such Random intensities of noises as RIN models.

This class of models introduces a two-time-scale dyna
ics, one associated with ad correlation of noises~modeling
the smallest time scale under consideration, usually of
order of Kolmogorov time! and the other associated wit
variations of intensities of the noises, their possible coupl
to each other, and other parameters assumed to occur at
time scales, up to a few Lagrangian integral times. From
general point of view, one can assume a hierarchy of a n
ber of characteristic time scales. However, in the pres
paper we simplify the consideration in order to make it mo
analytically tractable, in accord to the presence of two ch
acteristic time scales in the Kolmogorov picture of fully d
veloped turbulence.

In the approximation of two time scales, one can st
with a Langevin-type equation, derive the associated Fok
Planck equation in Stratonovich or Ito formulations, and
to find a stationary solution of the Fokker-Planck equation
which slowly fluctuating parameters are taken to be fixed.
the next step, one evaluates stochastic expectation of th
sulting conditionalprobability density function over the pa
rameters with some distributions assigned to them. By
way one can obtain a stationary marginal probability den
function as the main prediction of the model.

The dynamical model~2! represents a particular simp
one-dimensional RIN model characterized by the presenc
an additive noise~a short time scale! and fluctuating com-
posite parameterb5g/s2 ~a long time scale!, whereg is
simply kinetic coefficient ~a multiplicative noise is not
present explicitly! ands2 is the additive noise intensity.

Two-time-scale stochastic dynamics in describing the
celeration jointly with the velocity and position was used
Sawford@15#:

] ta52~TL
211th

21!a1TL
21th

21u

1A2su
2~TL

211th
21!TL

21th
21L~ t !, ~10!

] tu5a, ] tx5u, ~11!

where

TL5
2su

2

C0ē
, th5

2a0n1/2

C0ē1/2
~12!

are two time scales,TL@th , C0 , a0 are Lagrangian structur
constants,su

2 is the variance of the velocity distribution, an

ē is mean energy dissipation rate per unit mass. This mo
predicts Gaussian stationary distributions for the accelera
and velocity reflecting uncorrelated character of the fluct
tions. An obvious extension of this model is to replaceē by
stochastic energy dissipation ratee, and assume that it is log
normally distributed in correspondence with the refined K
mogorov 1962 approach@16#.
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Recently, an attempt to generalize the Sawford mode
the case of fluctuating parameters has been made by
nolds @9#, with a good agreement with the experimental r
sults being achieved.

The growing interest in studying Langevin-type equatio
to describe developed turbulence is motivated by the rec
high precision Lagrangian experiments by Porta, Voth, Cra
ford, Alexander, and Bodenschatz@17#, the new data by
Crawford, Mordant, Bodenschatz, and Reynolds~the Taylor
microscale Reynolds number isRl5690, the normalized ac
celeration range is@260,60#{a, and the Kolmogorov time
scaleth is resolved! @18#, Mordant, Delour, Leveque, Arne
odo, and Pinton (Rl5740,aP@220,20#, th is not resolved!
@19#, Mordant, Crawford, and Bodenschatz@20#, and direct
numerical simulations of the Navier-Stokes equation by K
ichnan and Gotoh (Rl5380, aP@2150,150#) @21#; the
classical Reynolds number is Re5Rl

2/15. This gives an im-
portant information on the dynamics and new look to t
intermittency in high-Reynolds-number fluid turbulence.

Response characteristics of the polystyrene tracer par
of about 46mm size and the precision in the experimen
@17,18# allow to resolve about 1/20 of the Kolmogorov tim
and 1/20 of the Kolmogorov length in anRl5970 flow so
that the acceleration can be really resolved, and the par
follows rare violent events within 7% of the ideal value
acceleration even at the highest Reynolds number stu
there. For lower Reynolds numbers the resolutions with
spect to Kolmogorov scales are even much higher. The
lected statistics of about 1.73108 data points appeared to b
sufficient to establish finiteness of the fourth-order mom
of the acceleration,̂a4&. The acceleration values are ob
tained from the measured velocity increments in time
certain extrapolation to zero-time increment, a procedure
quiring handling data points in the dissipative scale@17,20#.

The stretched exponential fit with three parameters p
vides a good agreement with the experimental data on
transverse accelerationa of the tracer particle in theRl

5690 flow @17,20#,

P~a!5C expF2
a2

~11ub1a/b2ub3!b2
2G , ~13!

where b150.51360.003, b250.56360.02, andb351.600
60.003 are fit parameters andC50.733 is a normalization
constant. At large acceleration values the tails of the ab
P(a) decrease asymptotically as exp@2uau0.4#, which implies
a convergence of the fourth-order moment,̂a4&
5*2`

` a4P(a)da. The flatness factor of the distribution~13!
which characterizes the widening of its tails~when compared
with a Gaussian! is

F[
^a4&

^a2&2
.55.1, ~14!

which should be compared with the flatness of the exp
mental curve,F55568 @20#. We remind that for a Gaussia
distributionF53.
5-3
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A. K. ARINGAZIN AND M.I. MAZHITOV PHYSICAL REVIEW E 69, 026305 ~2004!
With constantb, the Gaussian probability density func
tion ~6! corresponds to the non-intermittent Kolmogor
1941 picture of fully developed turbulence, and agrees w
the experimental statistics of components of velocity inc
ments in time for large time scales, up to the integral ti
scale. However, it fails to describe observed Reynol
number dependent stretched exponential tails of the exp
mental acceleration probability density function~13! that
correspond to anomalously high probabilities for the tra
particle to have extremely high accelerations, bursts w
dozens of root-mean-square~rms! acceleration, in the devel
oped turbulent flow. Such a high probability of the extrem
acceleration magnitudes is associated with the Lagran
turbulence intermittency, which was found to be consid
ably stronger than the Eulerian one. Equivalently, one
say that it is related to an increase of the probability to h
large velocity increments in time with a decrease of the ti
scale, down to the Kolmogorov time scale~a statistical view-
point!.

In the Eulerian framework, the turbulence intermittency
usually understood differently, as an increase of the proba
ity to have large longitudinal velocity differences at sho
spatial scales, and studied through nonlinearity in sca
exponents of velocity structure functions~a structural view-
point!.

Intermittency of the stochastic energy dissipation rate
related to the dynamical intermittency of chaoticity in t
system that makes a link between the Eulerian and Lagra
ian intermittency to which we refer below.

The averaging~1! of the Gaussian distribution~6! over
randomly distributedb, an evaluation of the stochastic e
pectation, was found to be a simplead hoc procedure to
obtain observable predictions, with one free parameter,
meet experimental statistical data on the acceleration of
tracer particle. One can think of this as the averaging ov
large time span for one tracer particle, or as the averag
over an ensemble of tracer particles, moving in the thr
dimensional flow characterized by random spatially distr
uted domains with different values ofb.

Physically one would like to know the processes unde
ing the random character of the model parameterb. Due to
the definition~4! the random character ofb is attributed to a
random character of the drift coefficientg and/or the additive
noise intensitys2.

The distribution ofb is not fixed uniquely by the theory
so that a judicious choice off (b) makes a problem in the
RIN model ~1!–~6!.

The primary aim of the present work is to provide a cri
cal evaluation of the Langevin modeling approach by m
ing a comparative analysis of different types of models
the basis of recent Lagrangian experimental data.

The crucial point is to make a link between the Langev
type equation and the Navier-Stokes equation. This inclu
determination of statistical properties of stochastic terms
the functional form of deterministic terms, as well as th
dependence on the parameters entering the Navier-St
equation justified for the inertial range of fully develope
turbulence. Also, some extension of the stochastic equa
may be required to account for dependence of the param
02630
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on Lagrangian velocity fluctuations, in the spirit of secon
order stochastic models@15# and in correspondence to th
Navier-Stokes equation as the pressure gradient term in
Eulerian framework can be expressed in terms of the velo
owing to the incompressibility condition. Strong and nonl
cal character of Lagrangian particle coupling due to press
effects makes the main obstacle to derive turbulence st
tics from the Navier-Stokes equation. The layout of the pa
is as follows.

In Sec. II we review some recent one-dimensional Lan
vin models of the developed turbulence.

In Sec. II A, we outline implications of the RIN model
with the underlyingx-square~Sec. II A 1! and log-normal
~Sec. II A 2! distributions ofb @5,6,11#. We review results of
a recent approach@12# to specify f (b) which is based upon
relatingb to velocity fluctuationsu and using normal distri-
bution of velocity fluctuations with zero mean~Sec. II A 3!.
This enables to reproducex-square and log-normal distribu
tions of b as particular cases. In general, this approach
sumes that parameters of the model, such as the intensi
additive noise, depend on velocity fluctuations, in an agr
ment with the Heisenberg-Yaglom picture of developed t
bulence.

A nonlinear Langevin and the associated Fokker-Pla
equations obtained by a direct requirement that the proba
ity distribution satisfies some model-independent scaling
lation have been recently proposed by Hnat, Chapman,
Rowlands@22# to describe the measured time series of
solar wind bulk plasma parameters. We find this result r
evant to fluid turbulence since it is based on a stocha
dynamical framework and leads to the stationary distribut
with exponentially truncated power-law tails, similar to th
obtained in the above mentioned RIN models~Sec. II B!.

The above one-dimensional Langevin toy models of L
grangian turbulence all suffer from the lack of physical i
terpretation, e.g., of short term dynamics, or small-scale
large-scale contributions, in the context of three-dimensio
Navier-Stokes equation.

The Navier-Stokes equation based approach to desc
statistical properties of small-scale velocity increments, b
in the Eulerian and Lagrangian frames, was developed
much detail by Laval, Dubrulle, and Nazarenko@23#; see
also recent work@24#. This approach introduces nonlocal in
teractions between well separated large and small sca
elongated triads, and is referred to as the rapid distor
theory~RDT! approach. This approach is contrasted with t
Gledzer-Ohkitani-Yamada shell model, in which interactio
of a shell of wave numbers with only its nearest and ne
nearest shells are taken into account. We outline result
this approach and focus on the proposed one-dimensi
Langevin model of Lagrangian turbulence which we refer
as the Laval-Dubrulle-Nazarenko~LDN! model ~Sec. II C!.
Particularly, we calculate exactly the probability dens
function of acceleration stemming from this model.

In Sec. III we make qualitative and quantitative compa
tive analysis of the one-dimensional LDN and simple R
models.

In Sec. IV we study conditional probability density func
tion P(auu) taking the LDN model withd-correlated noises
5-4
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and assuming that the additive noise intensity parametea
depends on the amplitude of velocity fluctuationsu.

II. ONE-DIMENSIONAL LANGEVIN MODELS
OF THE LAGRANGIAN TURBULENCE

In this section, we outline results of some recent o
dimensional Langevin models of the Lagrangian fluid p
ticle acceleration in the developed turbulent flow.

A. Simple RIN models

1. The underlyingx-square distribution

With the underlyingG (x-square! distribution of b of
ordern (n51,2,3,. . . ),

f ~b!5
1

GS n

2D S n

2b0
D n/2

b (n/2)21expF2
nb

2b0
G , ~15!

the resulting marginal probability density function~1! with
P(aub) given by the Gaussian~6! is found in the form~cf.
Ref. @6#!

P~a!5
C

~a21n/b0!(n11)/2
, ~16!

where

C5

~n/b0!n/2GS n11

2 D
ApGS n

2D ~17!

is normalization constant. Withn53 (b053 for a unit vari-
ance! one obtains the normalized marginal distribution in t
following simple form:

P~a!5
2

p~a211!2
, ~18!

a prediction of thex-square model, with the Tsallis entrop
index taken to beq5(n13)/(n11)53/2 due to the theo-
retical argument that the number of independent rand
variables at Kolmogorov scale isn53 for the three-
dimensional flow@6#. One can see that the resulting margin
distribution is characterized by power-law tails thata priori
lead to divergent higher moments.

A Gaussian truncation of the power-law tails natura
arises under the assumption that the parameterb contains a
nonfluctuating part, which can be separated out as follo
b/2→ac

221b/2 @11#. This leads to the modified margina
distribution

P~a!5
C exp@2a2/ac

2#

~a21n/b0!(n11)/2
, ~19!
02630
-
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whereC is normalization constant andac.0 is a free pa-
rameter which can be used for a fitting. Taking the theoreti
valuen53 andb053 as in the above case, one obtains th

C5
2ac

2

p~ac
222!exp@ac

22#@12erf~ac
21!#12Apac

, ~20!

where erf(x) denotes the error function. The distribution~19!
at the fitted valueac539.0 is in a good agreement with th
experimental probability density functionP(a) @17,18#.

Note that atac→` ~no constant part! the model~19! cov-
ers the model~16!. Within the framework of Tsallis nonex-
tensive statistics, the parameterq21 measures a variance o
fluctuations. Forq→1 ~no fluctuations!, Eq. ~19! reduces to
a Gaussian distribution, which meets the experimental d
for temporal velocity increments at the integral time scale

A comparison of thex-square model~18! and x-square
Gaussian model~19! with the experimental data is shown i
Figs. 1 and 2. One can see that both the distributions foll
the experimentalP(a) to a good accuracy~at least up to 3
standard deviations!, although the tails of thex-square model
distribution departure to the experimental curve at biguau. A
major difference is seen from the contribution to the fourt
order momenta4P(a) shown in Fig. 2. Thex-square model

FIG. 1. Acceleration probability density functionP(a). Dots:
experimental data atRl5690 by Crawford, Mordant, and Boden
schatz @18#. Dashed line: stretched exponential fit~13!, b1

50.513, b250.563, b351.600, C50.733. Dot-dashed line: Beck
x-square model~18!, q53/2. Solid line:x-square Gaussian mode
~19!, ac539.0, C50.637. x5a/^a2&1/2 denotes normalized accel
eration.
5-5
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A. K. ARINGAZIN AND M.I. MAZHITOV PHYSICAL REVIEW E 69, 026305 ~2004!
yields a qualitatively unsatisfactory behavior indicating a
vergency of the predicted fourth-order moment. In contra
the x-square Gaussian model is in a good qualitative ag
ment with the data, reproducing them well at small and la
acceleration values although quantitatively it deviates at
termediate acceleration values and gives the flatness v
F.46.1 forac539.0, as compared to the flatness value~14!.

2. The underlying log-normal distribution

With the underlying log-normal distribution ofb,

f ~b!5
1

A2psb
expF 2

S ln
b

mD 2

2s2
G , ~21!

the resulting marginal probability density function~1! with
P(aub) given by the Gaussian~6! was recently proposed t
be @5#

P~a!5
1

2psE0

`

dbb21/2 expF 2

S ln
b

mD 2

2s2
Ge21/2ba2

,

~22!

where the only free parameters can be used for a fitting, o
derived from theoretical arguments,s253 (m5exp@s2/2# for
a unit variance!. This distribution is shown in Fig. 3 and wa

FIG. 2. Contribution to the fourth-order momenta4P(a). Top
panel, a linear plot, bottom panel: a log-log plot. Notation is t
same as in Fig. 1.
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found to be in a good agreement with the Lagrangian exp
mental data by Portaet al. @17#, the new data by Crawford
et al. @18#, Mordantet al. @19#, and direct numerical simula-
tions ~DNS! of the Navier-Stokes equation by Kraichnan an
Gotoh @21#.

However, the central part of the distribution shown in th
bottom panel of Fig. 3 reveals greater inaccuracy of the l
normal model@P(0).1.23# as compared with that of both
the x-square andx-square Gaussian models@P(0).0.65#
which are almost not distinguishable in the regio
uau/^a2&1/2<4 ~the bottom panel of Fig. 1!; see also recent
work by Gotoh and Kraichnan@13#. This is the main failing
of the log-normal model~22! for s253.0 although the pre-
dicted distribution follows the measured low probabili
tails, which are related to the Lagrangian intermittency, to
good accuracy. The central region of the experimental cu
~13! @P(0).0.73# contains most weight of the experiment
distribution and is the most accurate part of it, with the re
tive uncertainty of about 3% foruau/^a2&1/2,10 and more
than 40% foruau/^a2&1/2.40 @20#.

The distribution~22! is characterized by a bit bigger flat
ness value,F53 exp@s2#.60.3 fors253, as compared to the
flatness value~14!, which is nevertheless acceptable from th
experimental point of view. The peaks of the contribution

FIG. 3. Acceleration probability density functionP(a). Dots:
experimental data atRl5690 by Crawford, Mordant, and Boden
schatz @18#. Dashed line: stretched exponential fit~13!, b1

50.513, b250.563, b351.600, C50.733. Dot-dashed line: Beck
log-normal model~22!, s53.0. Solid line: Castaing log-norma
model ~23!, s050.625. x5a/^a2&1/2 denotes normalized accelera
tion.
5-6
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fourth-order moment shown in Fig. 4 do not match that
the experimental curve for theRl5690 flow. We note that
the best fit is achieved fors2 close to the theoretical value
but this does not significantly improve overlapping of th
peaks with the data points.

One naturally expects that a better correspondence to
experiment may be achieved by an accounting for sm
scale interactions via turbulent viscosity@certain nonlinearity
in the first term on the rhs of Eq.~2!# as it implies a damping
of the large events, i.e., less pronounced enhancement o
tails of P(a).

It should be noted that the idea to describe turbulen
intermittency via averaging of the Gaussian distribution ov
log normally distributed variance of some intermittent va
able was proposed a long time ago by Castaing, Gagne,
Hopfinger@14#,

P~x!5
1

2ps0
E

0

`

duu22 expF 2

S ln
u

m0
D 2

2s0
2

G e2x2/(2u2),

~23!

where x is a variable under study. Below, we apply th
model to the Lagrangian acceleration,x5a.

In technical terms, the difference from the Castaing lo
normal model is that in Eq.~22! the inversesquare of the

FIG. 4. Contribution to the fourth-order momenta4P(a). Top
panel, a linear plot; bottom panel, a log-log plot. Notation is t
same as in Fig. 3.
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variance,b5u22, is taken to be log normally distributed. I
essence, the models~22! and~23! are of the same type, with
different parameters assumed to be fluctuating at a large
scale and hence different resulting marginal distributions

One can check that the change of variable,u5b21/2, in
Eq. ~23! leads to the density function different from th
given by Eq.~22!,

P~x!.E
0

`

dbb23/2 expF 2

S ln
b

m1
D 2

2s1
2

G e2(1/2)bx2
, ~24!

where we have denotedm15m0
22 and s152s0 . Therefore,

the distributions~22! and ~23! are indeed not equivalent t
each other, both being of a stretched exponential form.

As to a comparison of the fits, we found that the fit of t
Castaing log-normal model~23! for the acceleration, with the
fitted values050.625 (m05exp@s0

2/2# for unit variance!, is
of a considerably lesser quality as one can see from Fig
and, more clearly, from Fig. 4. Positions of the peaks
a4P(a) are approximately the same for both the mode
namely,uau/^a2&1/2.8 as compared touau/^a2&1/2.10.2 for
the experimental curve.

We conclude this section with the following remark. Th
Langevin model of the type~2!, Fokker-Planck approxima
tion of the type~5!, and the underlying log-normal distribu
tion ~21! within the Castaing approach were recently used
Hnat, Chapman, and Rowlands@22# to describe intermittency
and scaling of the solar wind bulk plasma parameters.

3. The underlying Gaussian distribution of velocity fluctuations

The problem of selecting appropriate distribution of t
parameterb among possible ones was recently addresse
Ref. @12#. A specific model based on the assumption that
velocity fluctuationu follows normal distribution with zero
mean and variances was developed. The result is that a cla
of underlying distributions ofb can be encoded in the func
tion b5b(u), and the marginal distribution is found to be

P~a!5C~s!E
0

`

dbP~aub!expF2
@u~b!#2

2s2 GUdu

dbU, ~25!

whereu(b) is the inverse function. Note that only anabso-
lute value of u contributes to this probability distribution
Particularly, the exponential dependence

b~u!5exp@6u#, ~26!

features the log-normal distribution ofb so that Eq.~25!
leads to Eq.~22! used in Ref.@5#, while thex2 distribution of
order 1 is recovered with

b~u!5u2. ~27!

In general, this model is relevant whenb(u) is a monotonic
Borel function of the stochastic variableu mapping
@2`,`#{u to @0,̀ #{b, and allows one to rule out som
5-7
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ad hoc distributions ofb as well as to make appropriat
generalizations of bothx2 and log-normal distributions o
the parameterb.

Below, we develop a possible dynamical foundation of
above model.

The stationary distribution~25! with b(u)5exp@6u# can
be associated to the Langevin equation of the form@12#

] ta5gF~a!1evL~ t !, ~28!

where we denotev57u/2, u follows Gaussian distribution
with zero mean, and we takeg5const to simplify the con-
sideration.

In general, we adopt a viewpoint that statistical propert
of the accelerationa are associated with velocity fluctuatio
statistics due to the well-known Heisenberg-Yaglom theo
This theory predicts the following scaling of a component
the acceleration variance:

^a2&5a0ū9/2n21/2L23/2, ~29!

whereū is the rms velocity,L is the integral scale length, an
a0 is the Kolmogorov constant. This long-standing univer
ū9/2 scaling was confirmed by the recent Lagrangian exp
ments@17# to a very high accuracy, for about seven orders
magnitude in the acceleration variance, or two orders of
rms velocity, atRl.500. At lower Reynolds numbers,Rl

,500, it appeared that the Heisenberg-Yaglom scaling
nificantly deviates from the experimental data due to
emerging dependence ofa0 on Rl ~the acceleration is in-
creasingly coupled to large scales of the flow at low R
nolds numbers!.

We note also that in the Sawford model the Lange
equation~10! for a includes velocity fluctuationsu and the
variance of the velocity distribution.

Below, we outline a relationship of the model~28! to
some recent approaches in studying the intermittency.

~i! The form of the last term in Eq.~28!, in which v can
be viewed as a Gaussian process,v5v(t), independent of
the white noiseL(t), strikingly resembles that involved in
the recently developed log-infinitely divisible multifract
random walks~MRW! model by Muzy and Bacry@25#, a
continuous extension of discrete cascades.

~ii ! The driving force amplitude of the formev(t), with an
ultraslow decaying correlation function,^v(t)v(t1t)& t5
2l0

2ln@t/TL#, t,TL , in the Langevin-type equation has be
recently considered by Mordantet al. @19#; TL stands for the
Lagrangian integral time. The results of this model have b
found in a very good agreement with the experimentally
served very slow decay of the equal-position time autoco
lation of the fluid particle velocity increment magnitude
time uDtui u for each component~very much similar to MRW
model! attributed to the intermittency of Lagrangian traje
tories in the developed turbulent flow. Also, very slow dec
was observed for the cross correlation of the magnitude
the acceleration components. Both the dynamical corr
tions were found to vanish only fort.3TL , while the dy-
namical correlations of the full signed entities,Dtui , decay
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rapidly, the autocorrelation functions cross zero at about
.0.06TL , and the cross correlation functions are appro
mately zero.

We note that the fitted value of the above intermitten
parameterl0 (l0

250.11560.01) is very close to 1/s251/3,
with the values253 in Eq.~22! interpreted as the number o
independent random variables in three-dimensional spac
the Kolmogorov scale. If this is not due to a coincidence,
intermittency parameterl0 approaches simply the inverse o
the effective space dimension numberd,

l051/d, ~30!

d53, for high-Reynolds-number turbulent flows.
The above connection to the MRW model and very sl

decay of the correlations of the absolute values of accel
tion components indicate relevance of the specific repres
tation ~28!, with very slow varyinguuu, in the description of
intermittency. In fact, due to the experiments@26# the La-
grangian velocity auto correlation function̂ u(t)u(t
1t)& t /^u2& decays almost exponentially but very slowly,
vanish only fort.3TL , where the integral time scaleTL
52.231022 s, which is two orders of magnitude bigger tha
the Kolmogorov time scaleth52.031024 s, Rl5740, and
the mean velocity is about 10% of the rms velocity.

~iii ! Due to the well-known Kolmogorov power-law sca
ing relationship betweenē andū, the representation~28! can
be thought of as the result of using the relation lnb.ln e,
with ln e being normally distributed due to the refined Ko
mogorov 1962 theory. Here,e denotes the stochastic energ
dissipation rate per unit mass treated in the Lagrang
framework. From this point of view, one can identify

v5g ln e, ~31!

whereg is a constant. This means that the stochastic dyn
ics of the logarithm of the energy dissipation is independe
and it influences the acceleration dynamics specifica
through the intensity of driving stochastic force in Eq.~28!.
Stationary normal distribution ofv can be in turn derived
from the Fokker-Planck equation associated with the Lan
vin equation of a linear form,

] tv5g01g1v1g2L~ t !, ~32!

wheregi are constants. This equation is in an agreement w
the recent results of Eulerian~hotwire anemometer! study of
the interaction between velocity increments and normali
energy dissipation rate by Renner, Peinke, and Fried
@27#. Particularly, they found that an exponential depende
of the diffusion coefficient on the logarithmic energy diss
pation in the Fokker-Planck equation for the velocity incr
ments in space is in a very good agreement with the exp
mental data. We note that Eq.~32! does not imply a
logarithmic decay of the Lagrangian correlation functi
^v(t)v(t1t)& proposed in Ref.@19#. This may be attributed
to the well-known difference between the Eulerian~fixed
probe! and Lagrangian~trajectory! frameworks.
5-8
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~iv! For the choiceb(u)5exp@u# corresponding to the
log-normal distribution ofb, using Eq.~28! one can derive
the stationary probability density function of the form@12#

P~a!5E
2`

`

du C~u!exp$ ln@g~u!#2eua2/2%, ~33!

whereg(u) is a probability density function ofu. Hence the
joint probability density function can be written as

P~a,u!5C~u!exp$ ln@g~u!#2eua2/2%. ~34!

Such a form of the distribution, containing specifically t
double exponent, resembles the ‘‘universal’’ distribution
fluctuations~Gumbel function!

P~x!5c0 exp@c1~y2ey!#, y[c2~x2c3!, ~35!

where ci are constant, recently considered by Chapm
Rowlands, and Watkins@28# ~see also references therein! fol-
lowing the work by Portelli, Holdsworth, and Pinton@29#.
They used an apparently different approach~not related to a
Langevin-type equation for the acceleration studied in
paper! based on the multifractal-type energy cascade andx2

or log normal~Kolmogorov 1962 theory! underlying distri-
bution for the energy dissipation rate at fixed level. Th
pointed out a good agreement of suchP(x) with experimen-
tal data, wherex denotes a fluctuating entity observed in
variety of model correlated systems, such as turbulence,
est fires, and sandpiles. The result of this approach m
ours and we consider it as an alternative way to derive
characteristic probability measure of fluctuations; withg(u)
taken to be ax2 ~respectively, Gaussian! density function,
one obtains, up to a preexponential factor and consta
P(u);exp(2u2exp@u#) $P(u);exp(2u22exp@u#)%. Thus
we conclude that the universal distribution~35! can be de-
rived also within the general framework proposed in R
@12# that reflects a universal character of the underlyingx2

distribution @4#.
We note that although successful in describing the

served statistics of Lagrangian acceleration, with a f
simple hypotheses and one fitting parameter, the o
dimensional Langevin RIN models~1!–~5! and ~25!–~28!
suffer from the lack of physical interpretation in the conte
of the three-dimensional Navier-Stokes equation.

In summary, we have presented a class of models~25!–
~28! using the basic assumption that the parameterb depends
on normally distributed velocity fluctuations. This class h
been found to incorporate the previous RIN models in a u
fied way, with the dependenceb(u) required to be a~mono-
tonic! Borel function of the stochastic variableu.

B. Hnat-Chapman-Rowlands model

Another interesting model developed recently by Hn
Chapman, and Rowlands@22# to describe the observed tim
series of the solar wind bulk plasma parameters is base
the construction of Fokker-Planck equation for which t
probability density function obeys the following one
parametric model-independent rescaling:
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P~x,t !5t2a0Ps~xt2a0!, ~36!

wherex denotes fluctuating plasma parameter anda0 is the
scaling index. The valuea051/2 corresponds to a self
similar Brownian walk with Gaussian probability densi
functions at all time scales. The fitted valuea050.41 corre-
sponds to a single non-Gaussian distributionPs(xs), to
which the observed distributions of some four plasma para
eters collapse under the scaling,xs5xt2a0.

The Langevin equation of this model assumes only ad
tive noise, and in such an ansatz it was found to be

] tx5D1~x!1D2~x!h~ t !, ~37!

whereD1 andD2 are of the form

D1~x!5Ab0

D0
x12a0

21/2, ~38!

D2~x!5@b0~12 1
2 a0

21!2a0#x12a0
21

, ~39!

a0 ,b0 are constants and 2D0 is intensity of thed-correlated
Gaussian-white additive noiseh(t), ^h(t)&50. By construc-
tion, this specified form of the dynamical equation ensu
that the corresponding Fokker-Planck equation

] tP~x,t !5]x@a0x12a0
21

P1b0x22a0
21

]xP# ~40!

has the general solutionP(x,t), which exhibits the scaling
~36!. The fitted values area0 /b052, b0510, and a0

21

52.44. The rescaled distributionPs(xs) corresponding to
Eq. ~40! is characterized by power-law tails truncated
stretched exponential with a good fit to the tails of the e
perimental distribution, but itdivergesat the origin,xs→0.

To sum up, we point out that this diffusion model uses t
generalized self-similarity principle resembling that used
the Eulerian description of the energy cascade in the de
oped three-dimensional fluid turbulence and appears to
valid only asymptotically for large values of the variabl
with the fitted parameter value being abouta050.41.

C. Laval-Dubrulle-Nazarenko model

The Navier-Stokes equation based approach to desc
statistical properties of small-scale velocity increments, b
in the Eulerian and Lagrangian framework, was develope
much detail by Laval, Dubrulle, and Nazarenko@23#; see
also recent work@24#. This approach is based on featurin
nonlocal interactions between well separated large and s
scales, elongated triads, and is referred to as the RDT
proach. Decomposition of velocities into large- and sma
scale parts was made by introducing a certain spatial filte
a cutoff type. Within the framework of this approach, a thre
dimensional Langevin model of the developed turbulen
was proposed.

In its one-dimensional version, the toy model of the L
grangian turbulence naturally implies a nonlinear Langev
type equation for a component of the small-scale veloc
increments in time~in the zero time-scale limit it corre
sponds to the accelerationa of fluid particle! @23#,
5-9



ac
ke

ib

oc
ge

to
re

r
ie

ar
flu
b

i
rti
on
in

h
is

e
is

-

e
ri-
nc
e

s
ce
ry

ises
led

via
on

can
the

ud-

DN
w

ta-
kao
ts
is
s,

x-
the
nd
r-

he

el

A. K. ARINGAZIN AND M.I. MAZHITOV PHYSICAL REVIEW E 69, 026305 ~2004!
] ta5~j2n tk
2!a1s' . ~41!

This equation is a Lagrangian description in the scale sp
in the reference frame comoving with a wave number pac
Here,

n t5An0
21B2a2/k2 ~42!

stands for the turbulent viscosity introduced to descr
small-scale interactions,n0 is kinematic viscosity,B is con-
stant,k is wave number@] tk52kj, k(0)5k0 , to model the
RDT stretching effect in one-dimensional case#, j ands' are
multiplicative and additive noises associated with the vel
ity derivative tensor and forcing of small scales by lar
scales~the energy transfer from large to small scales!, re-
spectively.

We refer to the model~41! as the one-dimensional LDN
model of the developed Lagrangian turbulence. This
model can also be viewed as a passive scalar in a comp
ible one-dimensional flow.

The noises, one-dimensional versions of which appea
Eq. ~41!, are projections related to the large-scale velocit
Ui and small-scale velocitiesui of the flow as follows@23#:

ĵ5 ¹
→S 2kW

k2
~kWUW !2UW D , ~43!

ŝ'5ŝ2
kW

k2
~kW ŝ !, ~44!

s i5] j~UiU j2UiU j1ujUi2U jui !, ~45!

where the hat denotes Gabor transformation@30# and the bar
stands for the spatial cutoff retaining the large-scale p
One can see that the noises are related to the velocity
tuations and the additive noise contains interaction terms
tween the large- and small-scale dynamics.

This gives support to the idea that the intermittency
caused also by some nonlocal interactions within the ine
range and not merely by small scales. We remark that
would also like to know the role of the dissipative scale
this integrated picture.

Noisy character of the entities~43! and ~44! may not be
seen as a consequence of the Navier-Stokes equation, w
does not contain external random forces at the character
time scale. In the RDT approach,j and s' are treated as
independent stochastic processes entering the small-scal
namics~41! owing to the fact that the large-scale dynamics
weakly affected by small scales~which corresponds to a di
rect energy cascade in the three-dimensional flow! and thus
can be viewed as a given noise.

The relations~43! and ~44! can be used to trace back th
origin of the multiplicative and additive noises entering va
ous surrogate Langevin models of the developed turbule
and to provide important information on the dynamics und
lying the intermittency.
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Statistical properties of all the components of the noisej
and s' were studied numerically for decaying turbulen
and reveal rich and complex behavior, in the laborato
frame.

As a first step in the one-dimensional case, these no
were modeled in the Lagrangian frame by the coup
d-correlated Gaussian-white noises@23#,

^j~ t !&50, ^j~ t !j~ t8!&52Dd~ t2t8!,

^s'~ t !&50, ^s'~ t !s'~ t8!&52ad~ t2t8!,
~46!

^j~ t !s'~ t8!&52ld~ t2t8!,

whereD, a, and l are parameters depending on scale
k0 . The stationary solution of the Fokker-Planck equati
associated with Eq.~41! with the noises~46!,

] tP~a,t !5]a~n tk
2P!1D]a~a]aaP!2l]a~a]aP!

2l]a
2~aP!1a]a

2P, ~47!

is given by@23#

P~a!5C expF E
0

a

dy
2n tk

2y2Dy1l

Dy222ly1a
G , ~48!

whereC is a normalization constant and six parameters
be used to fit the experimental data. This model specifies
one-dimensional LDN model~41!, and we refer to this
model as the LDN model withd-correlated noises~dLDN
model!.

The Langevin equation containing both thed-correlated
Gaussian-white multiplicative and additive noises was st
ied in detail by Nakao@31# ~see also references therein! by
using the associated Fokker-Planck equation. The dL
model~41! extends Nakao’s set up by incorporating two ne
features:~i! the nonlinearity controlled byB in Eq. ~42! and
~ii ! the coupling of the noises controlled byl in Eq. ~46!.

It is interesting to note that the RDT approach quali
tively resembles the model studied by Kuramoto and Na
@32#, a system of spatially distributed chaotic elemen
driven by a field produced by nonlocal coupling, which
spatially long-wave and temporally irregular. Such system
in which the multiplicative noise is the local Lyapunov e
ponent fluctuating randomly due to the chaotic motion of
elements, show power-law correlations, intermittency, a
structure functions similar to that of the developed fluid tu
bulence.

In the following section, we make a comparison of t
RIN model ~1!–~5! with the Laval-Dubrulle-Nazarenko
model ~41!, as well as its particular case, the dLDN mod
~48!.
5-10
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III. COMPARISON OF THE SIMPLE RIN
AND LDN MODELS

A. A qualitative comparison

A direct comparison of the Langevin equations~2! and
~41! of the two models suggests the following evident ide
tifications:

gF~a!5~j2n tk
2!a, sL5s' . ~49!

Hence the additive noises can be made identical to each o
by puttings25a. Further, in the case of a linear drift force
F(a)52a, and constant viscosity,n t5n0 , we can identify
the remaining parameters,g5n0k22j, so that we get

b[g/s25~n0k22j!/a. ~50!

This relation implies that the parameterb can be viewed as a
stochastic variable with a nonzero mean due to the stoch
nature ofj assumed in the LDN model. This is in agreeme
with the simple RIN model, the defining feature of which
just that the fluctuating part ofb follows some statistica
distribution.

In the dLDN model~41!–~48!, both the additive and mul
tiplicative noises are takend correlateddue to Eq.~46!. This
is in a sharp contrast to the assumption thatb can be taken
constant to derive the stationary solution~6! which is the
foundation of the simple RIN model. More precisely, t
solution in the form~6! can be obtained as the lowest-ord
approximation ifb is slow varying in time as compared to
typical time scale associated with the additive noiseL(t) ~the
adiabatic approximation!. This suggests that the multiplica
tive noisej should be taken as a sufficiently slow varyin
stochastic variable, to meet the ansatz used in the
model.

The detailed numerical analysis of the noises@23# for the
turbulent flow at relatively low Reynolds numbers, 57,Rl

,80, shows that the autocorrelation of the multiplicati
noisej decays much slower~by about one order of magni
tude! than that of the additive noises' . Hence a typical
time scale at whichj varies,tj , is considerably bigger than
that,ts , of s' . Also, the cross correlation between the tw
noises was found to be rather weak,l!D and l!a, by
about two orders of magnitude in the longitudinal case a
l50 in the transverse case. Altogether this allows one
introduce the time-scale hierarchytj@ts and to decouple
the noises, i.e., to putl50, which justifies the adiabatic
approximation and the one-dimensional RIN model.

The presence of the long-time correlated amplitudeev(t)

and the short-time correlated directional partL(t) of the sto-
chastic driving force in the Langevin-type equation cons
ered by Mordantet al. @19# also supports the above adiaba
approximation~two well separated time scales in the sing
additive stochastic force, in the Lagrangian framework!. As
usual, thed-correlated noise originates from taking the lim
of zero correlation time in a system with the smallest fin
noise correlation time.

On the contrary, in the dLDN model one assumes
approximation of comparable time scales,tj.ts , and re-
tains the coupling parameterl relating small-scale stretchin
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and vorticity and responsible for the skewness, which
however quite small in homogeneous isotropic turbul
flows.

The use of the constant turbulent viscosityn t5n0 makes a
good approximation in describing intermittency correctio
since both the constant and turbulent viscosities were fo
to produce corrections which are of the same level as
DNS result@23#. In the physical context, this means that t
small-scale interactions are not of much importance in
dynamics underlying the intermittency. This justifies the u
of the approximation of linear forcingF(a)52a in the
simple RIN model. We note that this is also in an agreem
with both the experimental results for the Lagrangian vel
ity autocorrelation function by Mordant, Metz, Michel, an
Pinton @26# and the recent experimental Eulerian results
the spatial velocity increments by Renner, Peinke, a
Friedrich @27#.

Alternatively, one can consider amore generalRIN
model characterized by the presence ofd-correlated
Gaussian-white additive andmultiplicative noises and fluc-
tuating intensities of both the noises. This will lead to
model similar to the dLDN model~41! in which the noise
intensitiesD and a and the coupling parameterl are as-
sumed to fluctuate at a large time scale.

In summary, we found that the one-dimensional R
model~1!–~5! can be viewed as a particular case of the o
dimensional LDN model~41! of turbulence which is based
on the RDT approach by Laval, Dubrulle, and Nazaren
@23#. It should be stressed that while both the toy mod
assume introduction of some external statistics—the c
relator of L(t) and the distributionf (b) in Eq. ~1! and the
correlators ofj ands' in Eq. ~41!—the LDN model is char-
acterized by a solid foundation and reveals a rich structur
compared to the RIN model.

In the first approximation, i.e.,l50, n t5n0 , and tj

@ts , the class of RIN models is in a quite good qualitati
correspondence with the LDN model~41! and differs from
the specific dLDN model~41!–~48! by the only fact that in
the latter one assumestj.ts and introduces ad-correlated
multiplicative noise. Hence the different resulting probabil
density functions for the acceleration of fluid particle in t
developed turbulent flow, Eqs.~19!–~22! and ~48!, respec-
tively.

B. A quantitative comparison

With the above result of the qualitative comparison, w
are led to make a more detailed, quantitative comparison
the dLDN model~41!–~48! and the simple RIN model~1!–
~5! with the underlyingx2 or log-normal distribution ofb, in
order to determine which approximation,tj.ts or tj

@ts , is better when used to describe the Lagrangian sta
tical properties of the developed turbulent flow. We take
recent high precision Lagrangian experimental data@17,18#
on statistics of fluid particle acceleration in the develop
turbulent flow as a testbed. Actually we follow the rema
made in Ref.@23# that thed approximation ofj is debatable
and the performance of such a model should be further
amined in the future.
5-11
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In Ref. @23#, explicit analytic evaluation of the distribu
tion ~48! is given for the particular casen t5n0 , while the
general case is treated in terms ofd ln P(a)/da when fitting to
the numerical RDT data (24<a<4). In order to make fits
to the experimental probability density functionP(a) and to
the contribution to the fourth-order moment,a4P(a), cover-
ing wide range of the normalized acceleration,260<a
<60, one needs an analytic or numerical evaluation of
rhs of Eq.~48!. To this end, we have calculatedexactlythe
integral appearing in the dLDN probability density functio
~48! ~see the Appendix!.

Thex2 and log-normal distribution-based probability de
sity functions~19! and ~22! are both realizations of the RIN
model and contain one fitting parameter,ac and s, respec-
tively. The result of comparison of fitting qualities of the
functions @11#, with ac539.0 ands53.0, is that the prob-
ability density function~22! provides a better fit to the ex
perimental data@18# on low-probability tails and the contri
bution to the kurtosis summarizing the peakedness
distribution. However, since the integral in Eq.~22! cannot
be evaluated analytically we will use the distribution~19!,
which provides a better fit to the central region when deal
with analytic expressions.

The dLDN probability density function~48! contains six
parameters which can be used for a fitting, the multiplicat
noise intensityD, the additive noise intensitya, the coupling
l between the multiplicative and additive noises, the tur
lent viscosity parameterB, the parametern0 , and the wave
number parameterk.

The parameter k. For a fitting, we can putk51 without
loss of generality since it can be absorbed by the redefini
of the parametersn0 andB,

n0k2→n0 , Bk→B. ~51!

The parametera. The structure of the rhs of Eq.~48! is
such that only four parameters out of five can be used fo
fitting. For example, one can puta51 without loss of gen-
erality by using the following redefinitions,

n0 /a→n0 , B/a→B, D/a→D, l/a→l. ~52!

Alternatively, one can putD51 provided the redefinitions

n0 /D→n0 , B/D→B, a/D→a, l/D→l. ~53!

The parameter l. Due to Eq. ~A5! we have c
52 iADa2l2, which is purly imaginary forDa.l2 and
real forDa,l2. Forc50, i.e.,Da5l2, the integral~A3! is
finite since divergentF(c) andF(2c) defined by Eq.~A4!
cancel each other. Since the parameterl measuring the cou
pling between the noises is assumed to be much smaller
both the noise intensitiesD anda @23#, we putDa.l2 in
our subsequent analysis. Moreover, the parameterl respon-
sible for the skewness can be set to zero since we wil
interested, as a first step, in statistically isotropic and hom
geneous turbulent flows, for which the experimental distrib
tion P(a) exhibits very small skewness@17#.

Thus, we can use three redefined free parametersn0 , B,
andD for a fitting, withk51, a51, andl50. However, we
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shall keepk anda in an explicit way in the formulas below
to provide a general representation.

We start by considering two important particular cases
the dLDN probability density function~48!: a constant vis-
cosity n t5n0 and a dominating turbulent viscosityn t
5Buau/k.

1. Constant viscosity

At l50 ~symmetric case! andB50, i.e., constant viscos
ity n t5n0 , using Eq.~A1! in Eq. ~48! we get~cf. Ref. @23#!

P~a!5C~Da21a!2(11n0k2/D)/2, ~54!

whereC is normalization constant. This distribution is of
power-law-type and we can compare it with the result~19!,
which contains a Gaussian truncation of similar power-l
tails.

We note that with the identifications

D/a52~q21!, ~11n0k2/D !/251/~q21!, ~55!

the distribution~54! coincides with that obtained in the con
text of generalized statistics with the underlyingx2 distribu-
tion @6#. Particularly, forq53/2 (n53, b053) used there, it
follows thatD/a51 andn0k253.

It is highly remarkable to note that the two different a
proaches yield stationary distribution of exactly the sa
power law form for certain identification of the parameter
namely, the Gaussian-whited-correlated multiplicative and
additive noises with constant intensities and a linear d
term imply P(a) of the same form as that obtained in th
RIN model withx2 distributedb, the ratio of the drift coef-
ficient to the intensity of the Gaussian-whited-correlated
additive noise. It follows that the effect ofx2 distributedb
mimics the presence of the multiplicative noise, and v
versa, in this particular case.

The power-law distribution~54! can be used to get a goo
fit of the Lagrangian experimentalP(a) data for small accel-
erations, e.g., with the normalized values ranging fro
210 to 10, but in contrast to the Gaussian truncated one~19!
it exhibits strong deviations for largea, and for (1
1n0k2/D)/2<2 leads to a divergent fourth-order momen
which is known to be finite@11,17,10#.

Introducing the noise intensity ratio parameter

b5AD/a ~56!

and denoting

k52~11n0k2/D !/2, ~57!

we can rewrite the normalized distribution~54! as follows
~cf. Ref. @31#!:

P~a!5
~11b2a2!k

22F1S 2k;
1

2
;
3

2
;2b2D , ~58!

where 2F1 is the hypergeometric function. In accord to th
analysis made by Nakao@31#, for smalladditive noise inten-
5-12
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ONE-DIMENSIONAL LANGEVIN MODELS OF FLUID . . . PHYSICAL REVIEW E69, 026305 ~2004!
sity, i.e., atb@1, this distribution exhibits a pronounced pl
teau near the origin, and thenth order moments,truncated
by reflective walls at some fixeduau, behave as a power ofb,

^an&;b2n0k2/D for n.n0k2/D, ~59!

^an&;b2n for n,n0k2/D, ~60!

wheren.0. Thus, the truncated moments behave as

^an&;G01G1b2H(n), ~61!

whereG0,1 are some constants and the functionH(n) is zero
at n0k250 and monotonically saturates ton at big n0k2. It
should be stressed that such a behavior of the moment
small additive noise intensity is not specific to the distrib
tion ~58! since it gives divergent moments but arises af
some truncation of it, for example, by means of reflect
walls or nonlinearity. Particularly, a truncation of the powe
law tails of the distribution naturally arises when account
for the turbulent viscosity to which we turn below.

2. Dominating turbulent viscosity

At l50 ~symmetric case!, for the case of dominating
turbulent viscosity,n t5Buau/k, using Eq.~A2! we get for
positive and negativea, respectively,

P~a!5
Ce7Bka/D6Bka1/2D23/2arctan[(D/a)1/2a]

~Da21a!1/2
, ~62!

whereC is normalization constant. One can see that, as
pected, the power-law dependence is of a similar form a
Eq. ~54! but it is exponentially truncated at biguau owing to
the turbulent viscosity term. This distribution is similar to th
Gaussian truncated one~19! but the truncation is of an ex
ponential type and there is some symmetric enhanceme
the tails supplied by the arctan term.

Now we turn to the general case, which provides a l
between the two particular cases,n t5n0 and n t5Buau/k,
considered above.

3. The general symmetric case

At l50 ~symmetric case!, from Eqs.~A5!–~A7! we have

c52 id2 , c15 id1
2d2 , c25kd1 , ~63!

where we have denoted

d15AD~Dk2n0
22B2a!, d25ADa. ~64!

Note thatc is purly imaginary and the rhs of Eq.~A3! is
much simplified yielding a symmetric distribution with re
spect toa→2a. The entityc2 defined by Eq.~A7! may be
either real ~for Dk2n0

2.B2a) or purly imaginary ~for
Dk2n0

2,B2a). In particular, for the case of constant visco
ity, n0

2@B2, it is real while for the case of dominating tu
bulent part of the viscosity,B2@n0

2, it is purly imaginary,
provided that the intensities of noises,D and a, are of the
02630
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same order of magnitude. These two particular cases lea
different final expressions for the distribution~54! and ~62!,
respectively, obtained above.

In the general case, using Eqs.~63! and ~64! in Eq. ~A3!
after some algebra we obtain the following expression for
dLDN probability density function~48!, at l50:

P~a!5
Ce2n tk

2/D

~Da21a!1/2

3F4D5~B4Daa21k2~Dkn0
21d1n t!

2!

d1
6k2~Da21a!

G kd1 /(2D2)

,

~65!

whereC is normalization constant,d1 is given in Eq.~64!,
andn t is given by Eq.~42!.

It can be easily checked that Eq.~65! reduces to Eq.~54!
at B50, while to verify that it reduces to Eq.~62! at n t
5Buau/k requires the use of the fact thatd1 becomes purly
imaginary, returning back to the logarithmic representat
due to Eq.~A4!, and the identity~A8!.

The distribution~65! is characterized by the power-law
tails, which are~i! exponentially truncated and~ii ! enhanced
by the power-law part of the numerator, with both the effe
being solely related to the nonzero turbulent viscosity co
ficient B responsible for a nonlinear small-scale dynamics

We conclude that to provide an acceptable fit of the dLD
model prediction to the Lagrangian experimental data@18#
nonlinear small-scale interactions encoded in the turbule
viscosityn t are essential.

Sample fit of the dLDN probability density functionP(a)
given by Eq.~65! and contribution to the fourth-order mo
ment,a4P(a), are shown in Figs. 5 and 6, respectively.
the numerical fit, we have put, in accord to the redefinitio
~52!, the wave number parameterk51 and the additive noise
intensity parametera51 in Eq.~65! and fitted the remaining
three parametersn0 , D, and B. One can observe a goo
agreement with the experimental data. Particularly,
dLDN contribution to the kurtosisa4P(a) plotted in Fig. 6
does peak at the same points as the experimental curve~po-
sitions of the peaks depend mainly onD). The central part of
the dLDN distribution shown in the bottom panel of Fig.
fits the experiment to a higher accuracy as compared with
log-normal model~22! but yet depart from that of the exper
mental curve. This departure can be attributed to the appr
mation ofd-correlated multiplicative noise used in the dLD
model ~see discussion in Sec. III above!.

Having the general form of the dLDN distribution evalu
ated explicitly, Eq.~65!, one can derive higher acceleratio
momentŝ an&, n52,4, . . . . Theassociated integrals are no
analytically tractable and can be evaluated numerically.
will consider these in Sec. IV below.

In the most general case (l5” 0) the resultingP(a) is
given due to an exponential of the exact integral~A3! which
we do not represent here for brevity.

To sum up, we have made an important step forward w
the dLDN model by having calculatedP(a) exactly. We
5-13
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A. K. ARINGAZIN AND M.I. MAZHITOV PHYSICAL REVIEW E 69, 026305 ~2004!
have shown that the dLDN model is capable to reproduce
recent Lagrangian experimental data on the acceleration
tistics to a good accuracy. Particularly, we found that t
predicted fourth-order moment density function does pea
the same value of acceleration,uau/^a2&1/2.10.2, as the ex-
perimental curve, in contrast to the predictions of the ot
considered stochastic models. The presence of

FIG. 5. Acceleration probability density functionP(a). Dots:
experimental data atRl5690 by Crawford, Mordant, and Boden
schatz @18#. Dashed line: stretched exponential fit~13!, b1

50.513, b250.563, b351.600, C50.733. Dot-dashed line: Beck
log-normal model ~22!, s53.0. Solid line: Laval-Dubrulle-
Nazarenko model~65!, k51, a51, D51.130, B50.163, n0

52.631,C51.805.x5a/^a2&1/2 denotes normalized acceleration

FIG. 6. Contribution to fourth-order momenta4P(a). Notation
is the same as in Fig. 5.
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d-correlated multiplicative noise and the nonlinearity~turbu-
lent viscosity! in the model Langevin equation was found
be of much importance. The considered RIN models prov
less but yet acceptable accuracy of the low-probability ta
although they employ only one free parameter, which can
fixed by certain phenomenological arguments, as compa
to the dLDN model, which contains four free paramete
However, we stress that in contrast to the LDN model
considered RIN models have a meager support from the
bulence dynamics.

IV. CONDITIONAL PROBABILITY DENSITY FUNCTION
OF THE ACCELERATION

In the very recent paper@20# new experimental data on
the conditional probability density function of the transver
acceleration,P(auu), have been reported. In general, th
representation is in agreement with the proposed idea
velocity fluctuationsu are directly involved in the stochasti
acceleration dynamics@12# represented in Sec. II A 3.

Also, the observed conditional acceleration compon
variance has been found to be in a good agreement with
Sawfordet al. scaling relation~see Ref.@20# and references
therein!

^a2uu&;u6, ~66!

obtained to a leading order in the same componentu ~not to
be confused with the rms velocityū5^u2&1/2).

The experimental data reveal highly non-Gaussi
stretched exponential character ofP(auu), very similar to
that of P(a), for fixed u ranging from zero up to three rm
velocity ū @20# as opposed to the theoretical result th
P(auu) is a Gaussian ina due to the simple RIN model~6!,
with arbitrary b5b(u), or due to the more general RIN
model~33!. Similarity between the experimentalP(auu) and
P(a) suggests that they share the process underlying
fluctuations. Below, we address this important proble
within the framework of the RIN approach.

The idea is that the stretched exponential form of the t
of the observed conditional distributionP(auu) could be as-
signed solely to small time scales, while the marginal pro
ability distribution P(a) is developed fromP(auu) at large
time scales, in accord to the two-time-scale dynamics.

This requires some modification in the simple RIN mo
els. The sole use of thed-correlated Gaussian-white additiv
noise, with fluctuating intensity depending onu, and a linear
force F(a)52a, with fluctuatingg5g(u), is not capable
to explain the stretching in the observedP(auu), as it im-
plies only Gaussian conditional probability density functi
P(auu), for any fixedu.

However, it is known that accounting for themultiplica-
tive d-correlated Gaussian-white noise in the drift term
Langevin equation implies stretched exponential tails.

Hence we can simply follow the dLDN ansatz as a co
stitutive model~see Sec. II C! using the assumption that th
5-14
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additive noise intensitya appearing in the stationary prob
ability distribution P(auD,a,B,n0) given by Eq. ~65! de-
pends onu.

Here, we put the parameterl measuring coupling of the
noises to each other to zero ignoring thus the skewness
fect, which is very small for both the experimentalP(auu)
andP(a) @17,20#. This effect is nevertheless of much inte
est since it is associated with the relationship betw
stretching and vorticity in a three-dimensional flow. Mo
important here is that it may imply additional stretching
the tails as well@seel dependent terms in Eq.~A3!#. This
possible way to explain stretched exponential tails of
observedP(auu) can be considered elsewhere.

Following the arguments and techniques presented in
II A 3, the marginal probability distribution P(a)
5P(auD,B,n0) is obtained by integrating outu in

P~auu!5P~auD,a~u!,B,n0!, ~67!

with an appropriate choice of the functiona(u), for ex-
ample,a(u)5eu, and some probability distribution ofu, for
example, a Gaussian one with zero mean. Note that o
P(auD,a(u),B,n0) is fitted to the experimental curves of th
conditionalP(auu) there formally remains only one param
eter to be fitted in the marginalP(a), the variance of the
Gaussian distribution ofu, i.e., the rms velocityū.

The normalized conditional distribution~67! given by Eq.
~65! with a5eu is shown in Fig. 7, for four valuesu
50,1,2,3, and the other parameters fixed. One can obs
an increase of the variance with the increase ofu and a good
qualitative agreement with the experimental curvesP(auu)
@20#. We note that the velocity fluctuations are present o
in the definition of the LDN additive noise~45! which can be
viewed as a hint that only additive noise intensity essenti
depends onu. These results give an independent suppor
the model represented in Sec. II A 3.

We have checked a different reasonable assumption
the multiplicative noise intensity parameterD depends on
the velocity fluctuationsD.eu with the other parameter
fixed. The result is shown in Fig. 8. One can observe t
the change of the shape ofP(auu) defined as

FIG. 7. Conditional probability density functionP(auu) given
by Eq.~65! for a5eu, k51, D51.130,B50.163,n052.631. The
inner curve:u50. The outer curve:u53. x5a/^a2&1/2 denotes nor-
malized acceleration.
02630
ef-

n

e

c.

ce

ve

y

y
o

at

t

P(auD(u),a,B,n0) with the increase ofu does not qualita-
tively meet that observed in the experiments@20#. We note
that an increase ofD, i.e., stronger multiplicative noise, is
generally understood as the pronounced increase of the
tive chance for a fluid particle to have higher accelerations
compared to low accelerations, due to the multiplicative ra
dom process. This point of view is confirmed by Fig. 8. Als
for a completeness in Fig. 9 we represent sample depen
cies ofP(auD,a,B,n0) on the parametersB andn0 .

Using the dLDN probability functionP(auD,a(u),B,n0)
one can computêa2uu& and compare the result with th

FIG. 8. Conditional probability density functionP(auu) given
by Eq. ~65! for a51, k51, D51.13eu, B50.163,n052.631. The
outer curve:u50. The inner curve:u53. x5a/^a2&1/2.

FIG. 9. Conditional probability density functionP(auu) given
by Eq. ~65!. Top panel:a51, k51, D51.130, B50.163eu, n0

52.631 ~the outer curve,u50; the inner curve,u52). Bottom
panel: a51, k51, D51.130, B50.163, n052.631eu ~the outer
curve,u50; the inner curve,u53). x5a/^a2&1/2.
5-15
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predicted scaling relation~66! and the experimental dat
@20#. A sample plot of̂ a2uu& is shown in Fig. 10, where we
have used the exponential in the forma5eu/u0 to provide
possibility for a fitting to the experimental data~boxes!. Al-
though with the fitted exponent,u053, the result~triangles!
exhibits a departure to the experiment; qualitatively
model implies a correct behavior of the conditional accele
tion variance.

To summarize, the observed stretched exponential form
the conditional acceleration probability density functi
P(auu) can be understood within the framework of th
dLDN model ~65! due to the effect of the multiplicative
noise under the assumption that the additive noise inten
a depends on velocity fluctuationsu. The alternative as-
sumption that the multiplicative noise intensity depends ou
seems not to be in a qualitative agreement with the shape
experimental curves at the different values ofu except for
u50. The predicted conditional acceleration variance^a2uu&
with a5eu/u0, u053, have been found in a good qualitativ
agreement with the experimental curve. However, we
serve a departure to the experimental data.

V. DISCUSSION

We conclude with a few remarks.
~i! It is interesting to note that a universal probabili

density functionf (u) could be identified with the help of th
relation

E
2`

`

du u6f ~u!;ū9/2, ~68!

stemming from a comparison of the Heisenberg-Yagl
scaling relation~29! and the scaling~66!, both recently con-
firmed by the experiments, where we assume t
*2`

` du ^a2uu& f (u);^a2&. Obviously, the choice of a nor
malized Gaussian probability density function with ze
mean for f (u) does not lead to the above relation since

FIG. 10. The normalized conditional acceleration varian
^a2uu& as a function of normalized velocity fluctuationsu/^u&1/2.
Boxes: the experimental data on̂a2uu&/^a2& @20#, triangles:
^a2uu&/^a2u0& with P(auu) given by Eq.~65! for a5eu/3, k51,
D51.130,B50.163, andn052.631.
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implies ;ū6. This can be viewed as a signal for selecting
different probability distribution ofu, such as that of a
stretched exponential form.

~ii ! In the present paper, we put the parameterl, which
measures the coupling between the multiplicative and a
tive noises in the dLDN model, to zero discarding thus ske
ness effects in the predictedP(auu) andP(a). This effect is
of much interest to study in order to estimatel using the
fitting to Lagrangian experimental data on the longitudin
component of acceleration with respect to the trajectoryl
50 by definition for the transverse component of accele
tion!. Presumably it is small due to small skewness of b
the observedP(auu) and P(a) for the measuredx compo-
nent of acceleration@18#.

~iii ! Following the RIN approach presented in this pape
is of interest to evaluate the proposed averaging of the dL
probability distribution P(auD,a(u),B,n0) given by Eq.
~65! over normally distributedu with a taken to bea5eu.
This is equivalent to the averaging over log normally distr
uted a. A comparison of the resulting distribution with th
Lagrangian experimental data can be made elsewhere.

~iv! In the present paper we have not reviewed a rec
work by Reynolds@9#. A comparison of the results of th
Reynolds model with that of the stochastic models propo
in Refs. @5,6# can be found in the recent paper by Morda
et al. @20#.

APPENDIX: EXACT INTEGRALS

Exact indefinite integrals, up to a constant term whi
does not depend ona, used in calculating the definite integra
entering the probability density function~48! are given be-
low.

At n t5n0 ,

E da
2n0k2a2Da1l

Da222la1a

52
D1n0k2

2D
ln@Da222la1a#

1
ln0k2

DADa2l2
arctan

Da2l

ADa2l2
. ~A1!

At n t5Buau/k, for positive and negativea, respectively,

E da
7Bka22Da1l

Da222la1a

57
Bka

D
2

D262Blk

2D2
ln@Da222la1a#

6
B~Da22l2!k

D2ADa2l2
arctan

Da2l

ADa2l2
. ~A2!

In the general case, we have obtained a cumbersome
pression

e
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E da
2n tk

2a2Da1l

Da222la1a

52
n tk

2

D
2

1

2
ln@Da222la1a#

2
2Blk

D2
ln@2Bka1n tk

2#1F~c!1F~2c!,

~A3!

where we have denoted

F~c!5
c1k2

2c2D2c
lnH 2D3

c1c2~c2Da1l!
@B2~l21cl2Da!a

1c~Dn t
2k21c2n t!#J , ~A4!
2.
0.

.

.

x-

y-

02630
c52 iADa2l2, n t5An0
21B2a2/k2, ~A5!

c15B2~4l314cl223Dal2cDa!1D2~c1l!n0
2k2,

~A6!

c25AB2~2l212cl2Da!k21D2n0
2k4. ~A7!

Some useful formulas used in verifying the limitsB→0 and
D→0 are

arctanx5
i

2
@ ln~12 ix !2 ln~11 ix !#, ~A8!

lim
D→0

1

D
ln@11Da2#5a2. ~A9!
in-

D

LS
s,

,

int
ha-

int

ev.
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