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One-dimensional Langevin models of fluid particle acceleration in developed turbulence
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We make a comparative analysis of some recent one-dimensional Langevin models of the acceleration of a
Lagrangian fluid particle in developed turbulent flow. The class of models characterized by random intensities
of noises(RIN models provides a fit to the recent experimental data on the acceleration statistics. We review
the model by Laval, Dubrulle, and NazarenkdN) formulated in terms of temporal velocity derivative in the
rapid distortion theory approach, and propose its extension due to the RIN framework. The fit of the contri-
bution to fourth-order moment of the acceleration is found to be better than in the other stochastic models. We
study the acceleration probability density function conditional on velocity fluctuations implied by the RIN
approach to the LDN-type model. The shapes of the conditional distributions and the conditional acceleration
variance have been found in a good agreement with the recent experimental data by Mordant, Crawford, and
BodenschatzPhysica D(to be publishey e-print physics/0303003
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[. INTRODUCTION can be found as a stationary solution of the corresponding
Fokker-Planck equation
Tsallis statistics[1] inspired formalism[2—4] was re-

cently used by Beck5,6] to describe Lagrangian statistical o 2

properties of developed turbulence; see also R&fs9]. In P (@,1)=dd ~ yF(a)+o7da]P(aL), ®

recent paper$l0-12 we have made some refinements of

this approach. The probability density function of a compo-where d,=d/da. This equation can be derived from the

nent of the Lagrangian acceleration of infinitesimal fluid par-Langevin equatioii2) using the nois€3) either in Stratonov-

ticle in the developed turbulent flow is found due to theich or Ito interpretations. Particularly, for a linear drift force

equation F(a)=—a, the stationary probability density function
P(a,t)=0 is of a Gaussian form:

F’(a)=J daP(alp)f(B), D
0 P(alB)=C(B)exd — Ba’/2], (6)

where P(a|B8) is a conditional probability density function

associated with a surrogate dynamical equation, the onevhere C(B)=\B8/27 is a normalization constant and

dimensional Langevin equation for the acceleratipn e[ —o,%]. The functionf(B) entering Eq(1) is a probabil-

ity density function arising from the assumption thais a

random parameter with prescribed external statistics.

While it is evident that the three-dimensional Navier-
Stokes equation with a-correlated Gaussian-white random
forcing belongs to a class of nonlinear stochastic dynamical
equations for the velocity field with which one can associate
some generalized Fokker-Planck equations, it is a theoretical
challenge to make a link between the Navier-Stokes equation

(L(1))=0, (L(t)L(t"))=28(t—t"), 3) and surrogate one-dimensional Langevin models for accel-
eration such as Ed2). This model is, of course, far from
where the averaging is made over ensemble realizations. being a full model of the essential Lagrangian dynamics of

For constant parameterg and o, this usual Langevin fluid in the developed turbulence regime.

da=vyF(a)+aL(t). (2

Here, d; denotes time derivative; (a) is the deterministic
drift force, vy is the drift coefficientg®> measures intensity of
the noise, a strength of the additive stochastic force L4

is Langevin source, &-correlated Gaussian-white noise with
zero mean,

model ensures that the stochastic proegs¥ defined by Eq. Review and critical analysis of the applications of various
(2) is Markovian. The probability density functid®(a|8) of recent nonextensive statistics based models to the turbulence
the acceleration at fixeg, have been made by Gotoh and Kraichf&8]. An emphasis
was made that some models lack justification of a fit from
B=vylo?, (4)  turbulence dynamics although being able to reproduce ex-

perimental data to more or less accuracy. A deductive support
from the three-dimensional Navier-Stokes equation was
*Also at Department of Mechanics and Mathematics, Kazhakhstressed to be essential for the fitting procedure to be consid-
stan Division, Moscow State University, Moscow 119899, Russia. ered meaningful.
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do; the dynamical variable, or the associated Fokker-Planck
=gt Qwitvkdi, (7)  equation(a partial differential equationfor one-point prob-
ability density function.
S . . With the choice ofs-correlated noises such models fall
which incorporates the Eulerian local acceleration and non-

. ; . : into the class of Markovian modelsio memory effects at
linear advection term, can be measured easier by using the

Lagrangian framework while in the Eulerian framework smaI_I SC?"G)B allowing w_eII esfcablished_ I_:okl_<er-PIanck ap-
(fixed probe this requires measurements of the veloaity proximation. The consideration of finite-time correlated
and temporal and spatial velocity derivativas; and o, noises and Fhe associated memory effects requires a Qeeper
where d,= d/9x¥ denotes spatial derivative inlthe Cglrtle’siananalySIS which should be made separately in each particular
Iaboratokry frame of reference:k=1.2,3. In the Lagrangian case. The evolution equations are formulated and solved in

. ; . the Lagrangian frameworfthe comoving framg in a purely
framework, the Navier-Stokes equation can be written as temporal treatment, with fluctuations being treated along the

5 particle trajectory.
a=—p lop+vitvi+f;, (8 Approximation of a short-time correlated noise by the
zero-time correlated one is usually made due to the time-

where p is constant fluid densityp is pressurey is kine- scale hierarchy emerging from the general physical analysis
matic viscosityp; = d,x; is velocity, andf; is forcing. Here, of the system and experimental data. Under the stationarity
x;=X;(Xox 1) is the particle coordinate viewed as a function €ondition, a balance between the energy injected at large
of the initial valuex;(0)=x,; and timet so that the measure- Scales and the energy dissipated by viscous processes at
ment of time serie; (t) of some individual particle by using SMall scales, one can try to solve the Fokker-Planck equation
a fine finite-difference scheme allows one to evaluate its ac® find stationary probability density function of the accel-

celeration as a function of time by using the Lagrangian re€ation, P(a). This function as well as the associated mo-
lation ments can then be compared with the experimental data on

acceleration statistics. The Fokker-Planck approximation al-
lows one to make a link between the dynamics and the sta-
tistical approach. In the case when stationary probability dis-
tribution can be found exactly one can make a further
With the initial data pointxg; (Lagrangian coordinatgsun-  analysis without a dynamical reference, yet having a possi-
ning over all the fluid particles one gets a Lagrangian debility to extract stationary time correlators.
scription of the fluid flow. Direct analytical evaluation of the  In contrast to the usual Brownian like motion, the fluid
acceleration from Eq(8) is out of reach at present so that particle acceleration does not merely follow a random walk
one is led to estimate it in some fashion. with a complete self-similarity at all scales. It was found to
The model(2) belongs to a class of stochastic models ofreveal a different, multiscale self-similarity, which can be
Lagrangian turbulence and deals with an evolution of theseen from wide tails of a quasi-Gaussian distribution of the
acceleration in time which in accord to the Navier-Stokesexperimental probability distributiof(a). This requires a
equation is driven by time derivative on the right-hand sideconsideration of some specific Langevin-type equations,
(rh9) of Eq. (8). This type of modeling corresponds to the which may include nonlinear terms, e.g., to account for tur-
well-known universality (Kolmogorov 1941, Heisenberg bulent viscosity effect, and an extension of the usual proper-
1948, and Yaglom 1949in statistically homogeneous and ties of model forces and additive and multiplicative noises.
isotropic developed turbulence which is expected to occur in  Specifically, the class of models represented by Ebs:
the inertial range only statistically. Accordingly, the velocity (6) is featured by consideration of the acceleration evolution
and acceleration become random, and one is interested friven by the “forces” characterized by fluctuating drift co-
their probability density functions, or multipoint correlation efficient y (or fluctuating intensity of multiplicative
functions. This is in an agreement with the observed tempoé-correlated noise in a more general gased/or fluctuating
rally irregular character of the velocity and acceleration of aintensity o of the additive noise. This was found to imply
tracer particle in high-Reynolds-number turbulent flows. Bystationary distributions of the acceleratitr velocity incre-
the universality, statistics of the velocity and statistics of thements in time, for finite time lagf a quasi-Gaussian form
acceleration do not depend on statistics of the forcing anavith wide tails which are a classical signature of the turbu-
chosen initial data. In this paper we are interested in statistickence intermittency, a phenomenon which developed turbu-
of one of the acceleration componerds,so that we model lent flows exhibiting at small time scales. Earlier work on
its evolution in time. such type of models are due to Castaing, Gagne, and Hopfin-
In a physical context, an essential fluid particle dynamicsger [14], referred to as the Castaing model, in which a log-
in the developed turbulent flow is described here in terms ofiormal distribution of fluctuating variance of intermittent
a generalized Brownian-like motion, a stochastic particle apvariable was used without reference to a stochastic dynami-
proach, taking the particle accelerati(® as the dynamical cal equation.
variable. Such models are generally based upon a hierarchy The difference from the well-known class of stochastic
of characteristic time scales in the system and naturally emmodels with §-correlated Gaussian-white multiplicative and
ploy one-point statistical description using Langevin-typeadditive noises which are also known to imply quasi-
equation(a stochastic differential equation of first ordésr ~ Gaussian stationary distributions with wide tails is that one

a

a;= (9I2Xi . (9)
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supposes thaintensitiesof the noises are not constant but  Recently, an attempt to generalize the Sawford model to
fluctuate at a large time scale. We refer to the models withhe case of fluctuating parameters has been made by Rey-

such Random intensities of noises as RIN models. nolds[9], with a good agreement with the experimental re-
This class of models introduces a two-time-scale dynamsults being achieved.
ics, one associated with & correlation of noisesmodeling The growing interest in studying Langevin-type equations

the smallest time scale under consideration, usually of théo describe developed turbulence is motivated by the recent
order of Kolmogorov timg and the other associated with high precision Lagrangian experiments by Porta, Voth, Craw-
variations of intensities of the noises, their possible couplindord, Alexander, and Bodenschaf27], the new data by
to each other, and other parameters assumed to occur at larGeawford, Mordant, Bodenschatz, and Reynditie Taylor
time scales, up to a few Lagrangian integral times. From amicroscale Reynolds numberkg =690, the normalized ac-
general point of view, one can assume a hierarchy of a nunceleration range if—60,60 > a, and the Kolmogorov time
ber of characteristic time scales. However, in the presergcaler, is resolved [18], Mordant, Delour, Leveque, Arne-
paper we simplify the consideration in order to make it moreodo, and PintonR, =740,a <[ — 20,20, 7, is not resolved
analytically tractable, in accord to the presence of two charf19], Mordant, Crawford, and Bodenschd®0], and direct
acteristic time scales in the Kolmogorov picture of fully de- numerical simulations of the Navier-Stokes equation by Kra-
veloped turbulence. ichnan and Gotoh R, =380, ac[—150,15Q) [21]; the

In the approximation of two time scales, one can startlassical Reynolds number is R&®2/15. This gives an im-
with a Langevin-type equation, derive the associated Fokkeortant information on the dynamics and new look to the
Planck equation in Stratonovich or Ito formulations, and tryintermittency in high-Reynolds-number fluid turbulence.
to find a stationary solution of the Fokker-Planck equation, in  Response characteristics of the polystyrene tracer particle
which slowly fluctuating parameters are taken to be fixed. Asf about 46um size and the precision in the experiments
the next step, one evaluates stochastic expectation of the rgr7,18 allow to resolve about 1/20 of the Kolmogorov time
sulting conditional probability density function over the pa- and 1/20 of the Kolmogorov length in &R, =970 flow so
rameters with some distributions assigned to them. By thishat the acceleration can be really resolved, and the particle
way one can obtain a stationary marginal probability densityollows rare violent events within 7% of the ideal value of
function as the main prediction of the model. acceleration even at the highest Reynolds number studied

The dynamical mode(2) represents a particular simple there. For lower Reynolds numbers the resolutions with re-
one-dimensional RIN model characterized by the presence @pect to Kolmogorov scales are even much higher. The col-
an additive noisga short time scajeand fluctuating com-  |ected statistics of about 2710% data points appeared to be
posite parametep= y/c* (a long time scalg wherey is  sufficient to establish finiteness of the fourth-order moment
simply  kinetic coefﬂuent(a multiplicative noise is not of the acceleration{a*). The acceleration values are ob-
present explicitly and o* is the additive noise intensity. tained from the measured velocity increments in time by

Two-time-scale stochastic dynamics in describing the accertain extrapolation to zero-time increment, a procedure re-
celeration jointly with the velocity and position was used byqumng hand“ng data pomts in the d|ss|pat|ve SC{&J@ 2(]

Sawford[15]: The stretched exponential fit with three parameters pro-
vides a good agreement with the experimental data on the
gta:_(T[1+t;l)a+T[lt;1u transverse acceleratioa of the tracer particle in thdr,
=690 flow[17,20,
FN20 (T, DT LD, (10
a2
P(a)=Cexp — , 13
du=a, Jx=u, (12) (@) % (1+|bya/b,|?3)b3 (13
where where b;=0.513+0.003, b,=0.563+0.02, andbs;=1.600
+0.003 are fit parameters arit=0.733 is a normalization
242 a2 constant. At large acceleration values the tails of the above
L:ii' t = ao¥ (12  P(a) decrease asymptotically as €xpal®4], which implies
Coe | Cpe'? a convergence of the fourth-order momenta®)

=[”_a*P(a)da. The flatness factor of the distributigh3)
which characterizes the widening of its tailghen compared

are two time scaleg;; = >t,, Co, ap are Lagran ian structure " o
> 0r <0 grang with a Gaussiahis

c:onstantsau is the varlance of the velocity distribution, and

€ is mean energy dissipation rate per unit mass. This model (a%)
predicts Gaussian stationary distributions for the acceleration F= ~55.1, (14)
and velocity reflecting uncorrelated character of the fluctua- (a%)?

tions. An obvious extension of this model is to replachby

stochastic energy dissipation rateand assume that it is log which should be compared with the flatness of the experi-
normally distributed in correspondence with the refined Kol-mental curveF =55+ 8 [20]. We remind that for a Gaussian
mogorov 1962 approadt6]. distribution F = 3.
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With constantg, the Gaussian probability density func- on Lagrangian velocity fluctuations, in the spirit of second-
tion (6) corresponds to the non-intermittent Kolmogorov order stochastic modeld5] and in correspondence to the
1941 picture of fully developed turbulence, and agrees witiNavier-Stokes equation as the pressure gradient term in the
the experimental statistics of components of velocity increEulerian framework can be expressed in terms of the velocity
ments in time for large time scales, up to the integral timeowing to the incompressibility condition. Strong and nonlo-
scale. However, it fails to describe observed Reynoldseal character of Lagrangian particle coupling due to pressure
number dependent stretched exponential tails of the expereffects makes the main obstacle to derive turbulence statis-
mental acceleration probability density functigh3) that tics from the Navier-Stokes equation. The layout of the paper
correspond to anomalously high probabilities for the traceis as follows.
particle to have extremely high accelerations, bursts with In Sec. Il we review some recent one-dimensional Lange-
dozens of root-mean-squafiens) acceleration, in the devel- vin models of the developed turbulence.
oped turbulent flow. Such a high probability of the extreme In Sec. Il A, we outline implications of the RIN models
acceleration magnitudes is associated with the Lagrangiawith the underlyingy-square(Sec. 1l A1) and log-normal
turbulence intermittency, which was found to be consider{Sec. Il A 2 distributions of3 [5,6,11. We review results of
ably stronger than the Eulerian one. Equivalently, one carm recent approacf2] to specifyf(8) which is based upon
say that it is related to an increase of the probability to haveelating 8 to velocity fluctuationau and using normal distri-
large velocity increments in time with a decrease of the timebution of velocity fluctuations with zero med8ec. 11 A 3.
scale, down to the Kolmogorov time scaéestatistical view-  This enables to reprodugesquare and log-normal distribu-
point). tions of B as particular cases. In general, this approach as-

In the Eulerian framework, the turbulence intermittency issumes that parameters of the model, such as the intensity of
usually understood differently, as an increase of the probabiladditive noise, depend on velocity fluctuations, in an agree-
ity to have large longitudinal velocity differences at short ment with the Heisenberg-Yaglom picture of developed tur-
spatial scales, and studied through nonlinearity in scalingpulence.
exponents of velocity structure functiofe structural view- A nonlinear Langevin and the associated Fokker-Planck
point). equations obtained by a direct requirement that the probabil-

Intermittency of the stochastic energy dissipation rate idty distribution satisfies some model-independent scaling re-
related to the dynamical intermittency of chaoticity in the lation have been recently proposed by Hnat, Chapman, and
system that makes a link between the Eulerian and LagrangRowlands[22] to describe the measured time series of the
ian intermittency to which we refer below. solar wind bulk plasma parameters. We find this result rel-

The averaging1) of the Gaussian distributiof6) over  evant to fluid turbulence since it is based on a stochastic
randomly distributed3, an evaluation of the stochastic ex- dynamical framework and leads to the stationary distribution
pectation, was found to be a simpsl hoc procedure to  with exponentially truncated power-law tails, similar to that
obtain observable predictions, with one free parameter, thaibtained in the above mentioned RIN mod&ec. 11 B.
meet experimental statistical data on the acceleration of the The above one-dimensional Langevin toy models of La-
tracer particle. One can think of this as the averaging over grangian turbulence all suffer from the lack of physical in-
large time span for one tracer particle, or as the averagingerpretation, e.g., of short term dynamics, or small-scale and
over an ensemble of tracer particles, moving in the threelarge-scale contributions, in the context of three-dimensional
dimensional flow characterized by random spatially distrib-Navier-Stokes equation.
uted domains with different values @. The Navier-Stokes equation based approach to describe

Physically one would like to know the processes underly-statistical properties of small-scale velocity increments, both
ing the random character of the model paramgebDue to  in the Eulerian and Lagrangian frames, was developed in
the definition(4) the random character ¢ is attributed to a much detail by Laval, Dubrulle, and Nazarenka3]; see
random character of the drift coefficieptand/or the additive also recent work24]. This approach introduces nonlocal in-
noise intensityo?. teractions between well separated large and small scales,

The distribution ofg is not fixed uniquely by the theory elongated triads, and is referred to as the rapid distortion
so that a judicious choice df(8) makes a problem in the theory(RDT) approach. This approach is contrasted with the
RIN model (1)—(6). Gledzer-Ohkitani-Yamada shell model, in which interactions

The primary aim of the present work is to provide a criti- of a shell of wave numbers with only its nearest and next-
cal evaluation of the Langevin modeling approach by maksearest shells are taken into account. We outline results of
ing a comparative analysis of different types of models orthis approach and focus on the proposed one-dimensional
the basis of recent Lagrangian experimental data. Langevin model of Lagrangian turbulence which we refer to

The crucial point is to make a link between the Langevin-as the Laval-Dubrulle-NazarenkbDN) model (Sec. Il Q.
type equation and the Navier-Stokes equation. This includeBarticularly, we calculate exactly the probability density
determination of statistical properties of stochastic terms anélinction of acceleration stemming from this model.
the functional form of deterministic terms, as well as their In Sec. lll we make qualitative and quantitative compara-
dependence on the parameters entering the Navier-Stok&ige analysis of the one-dimensional LDN and simple RIN
equation justified for the inertial range of fully developed models.
turbulence. Also, some extension of the stochastic equation In Sec. IV we study conditional probability density func-
may be required to account for dependence of the parametetion P(a|u) taking the LDN model withs-correlated noises
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and assuming that the additive noise intensity parameter 1
depends on the amplitude of velocity fluctuatians /\

OF THE LAGRANGIAN TURBULENCE

& 0.0001
In this section, we outline results of some recent one- / \
dimensional Langevin models of the Lagrangian fluid par-

ticle acceleration in the developed turbulent flow.

0.01
Il. ONE-DIMENSIONAL LANGEVIN MODELS ‘// \\

A. Simple RIN models

1. The underlying xy-square distribution x
With the underlyingl”’ (x-square distribution of 8 of o T A
ordern (n=1,2,3,...), ) /1A
; o:s il
1 n\" - nﬁ} {
= | — (n/2)-1 - 0:5
= g) (2/30) P ex’{ 26,7 ™ T\
03
the resulting marginal probability density functi¢h) with / \
P(a|B) given by the Gaussia(6) is found in the form(cf. 0.2 // 3\
Ref. [6]) 0.1 / )

B C 16) -4 -2 0 2 4
- (a2+n/,80)(”+1)’2’

P(a)

FIG. 1. Acceleration probability density functidh(a). Dots:
where experimental data &, =690 by Crawford, Mordant, and Boden-
schatz [18]. Dashed line: stretched exponential fil3), b,

n/2 n+1 =0.513,b,=0.563, b3=1.600,C=0.733. Dot-dashed line: Beck

(n/Bo)™ T T x-square mode{18), g=3/2. Solid line: y-square Gaussian model

C= m (17 (19, a,=39.0, C=0.637.x=al(a?)*? denotes normalized accel-
\/;F(E) eration.

where C is normalization constant ana.>0 is a free pa-
is normalization constant. With=3 (B,=3 for a unit vari-  rameter which can be used for a fitting. Taking the theoretical
ance one obtains the normalized marginal distribution in theyglyuen=3 andB,=3 as in the above case, one obtains that
following simple form:
C 2a; (20)
(18) m(aZ-2)exda; *|[1—erf(a; ) ]+27a,’

where erfk) denotes the error function. The distributiti)

a prediction of they-square model, with the Tsallis entropic at the fitted valuea,=39.0 is in a good agreement with the
index taken to bay=(n+3)/(n+1)=3/2 due to the theo- experimental probability density functidd(a) [17,18.

retical argument that the number of independent random Note that ata.— (no constant paythe mode(19) cov-
variables at Kolmogorov scale is=3 for the three- e€rs the mode(16). Within the framework of Tsallis nonex-
dimensional flow[6]. One can see that the resulting marginaltensive statistics, the parametgr 1 measures a variance of
distribution is characterized by power-law tails tiapriori ~ fluctuations. Fog— 1 (no fluctuationy Eg. (19) reduces to

P @

lead to divergent higher moments. a Gaussian distribution, which meets the experimental data
A Gaussian truncation of the power-law tails naturally for temporal -velocity increments at the integral time scale.
arises under the assumption that the paramg@teontains a A comparison of they-square mode(18) and y-square

nonfluctuating part, which can be separated out as followsGaussian modell9) with the experimental data is shown in
ﬁ/2—>a§2+,8/2 [11]. This leads to the modified marginal Figs. 1 and 2. One can see that both the distributions follow

distribution the experimentaP(a) to a good accuracyat least up to 3
standard deviationsalthough the tails of thg-square model
C exq —a?/a?] distribution departure to the experimental curve at|ig A
P(a)=—; VL (199  major difference is seen from the contribution to the fourth-
(a+n/Bo)™*H order momenta*P(a) shown in Fig. 2. Theg-square model
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| /A\
0.01 )
0 *\
&g & 0.0001 \
< \
0. 1076 \
0. s
1078 sa i
20 40
X
1.2 ;
' ST i
0.7 .,.// .."'QLA 1 : ‘.
P —~ e K
0.5 Ry :
ol \“-\'.. 0.8 +
0.3 /’// oK N
[ | ,," " nolE "f \“
% .2t //’ \ ’,:‘l '\_‘I\‘
0.15 7 :\ 0.4 + X
) \
0.1 = 0.2 /:, ‘\_‘:‘
-’ ‘\ ot _—_:_—_:.’-':-ﬁ"’ﬁ‘!’ Aé.\““m
1 2 5 10 20 50 -4 -2 0 2 4
x X
FIG. 2. Contribution to the fourth-order momeatP(a). Top FIQ. 3. Acceleration probability density functidd(a). Dots:
panel, a linear plot, bottom panel: a log-log plot. Notation is the®xPerimental data &, =690 by Crawford, Mordant, and Boden-
same as in Fig. 1. schatz [18]. Dashed line: stretched exponential fi13), b,

=0.513,b,=0.563, b;=1.600,C=0.733. Dot-dashed line: Beck

yields a qualitatively unsatisfactory behavior indicating a di-0g-normal model(22), 's=3.0. Solid line: Castaing log-normal

vergency of the predicted fourth-order moment. In contrast0del (23), s,=0.625.x=a/(a®)"* denotes normalized accelera-

the y-square Gaussian model is in a good qualitative agreetlon'

ment with the data, reproducing them well at small and large , , . .
acceleration values although quantitatively it deviates at iniound to be in a good agreement with the Lagrangian experi-

termediate acceleration values and gives the flatness valiBental data by Portat al. [17], the new data by Crawford

F=46.1 fora,=39.0, as compared to the flatness valLi. et al.[18], Mordantet al. [19], and dlreqt numerlcgl simula-
tions (DNS) of the Navier-Stokes equation by Kraichnan and

2. The underlying log-normal distribution Gotoh[21].

However, the central part of the distribution shown in the
bottom panel of Fig. 3 reveals greater inaccuracy of the log-

( ,3>2 normal model[ P(0)=1.23] as compared with that of both

With the underlying log-normal distribution ¢8,

In— the y-square andy-square Gaussian mod€l®(0)=0.65]

f(B)= 1 exd — m (21) which are almost not distinguishable in the region
J2msp 252 |’ |a|/(a?)¥?<4 (the bottom panel of Fig.)l see also recent

work by Gotoh and KraichnafiL3]. This is the main failing
the resulting marginal probability density functiéh) with  of the log-normal mode(22) for s>=3.0 although the pre-
P(alB) given by the Gaussiaf6) was recently proposed to dicted distribution follows the measured low probability
be [5] tails, which are related to the Lagrangian intermittency, to a
2 good accuracy. The central region of the experimental curve
(Inﬁ) (13) [ P(0)=0.73] contains most weight of the experimental
—1/2882 distribution and is the most accurate part of it, with the rela-
€ ’ tive uncertainty of about 3% fofa|/(a?)><10 and more
(220 than 40% forla|/(a®)?>40[20].

The distribution(22) is characterized by a bit bigger flat-
where the only free parametsican be used for a fitting, or ness valueF = 3 exgs’]=60.3 fors>=3, as compared to the
derived from theoretical argument®=3 (m=exds/2] for  flatness valu¢l4), which is nevertheless acceptable from the
a unit variancg This distribution is shown in Fig. 3 and was experimental point of view. The peaks of the contribution to

[

1
P(a)ZZ_ﬂ-s . d,3,6’_1/2 ex
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5 variance 8= 6" 2, is taken to be log normally distributed. In

essence, the mode(82) and(23) are of the same type, with

. /\ /\ different parameters assumed to be fluctuating at a large time
scale and hence different resulting marginal distributions.

/ \ / \ One can check that the change of variatle; 372, in

3 / \ / \ Eqg. (23) leads to the density function different from that

given by Eq.(22),

In—

)
P(x)= j;d/s/ﬁfz exp — 2L g2 (24

2
2s]

where we have denoteruilzmg2 ands;=2s,. Therefore,
the distributions(22) and (23) are indeed not equivalent to
5 =] each other, both being of a stretched exponential form.
v \ As to a comparison of the fits, we found that the fit of the
2t . Castaing log-normal modé23) for the acceleration, with the
/ \ fitted valuesy=0.625 (m0=exq§/2] for unit variance, is
¢ B of a considerably lesser quality as one can see from Fig. 3
and, more clearly, from Fig. 4. Positions of the peaks of
a*P(a) are approximately the same for both the models,
namely,|a|/(a®)>=8 as compared ta|/(a?)?=10.2 for
the experimental curve.

We conclude this section with the following remark. The
Langevin model of the typ€2), Fokker-Planck approxima-
tion of the type(5), and the underlying log-normal distribu-

1 2 5 N 10 20 50 tion (21) within the Castaing approach were recently used by
Hnat, Chapman, and Rowlanfd®2] to describe intermittency

FIG. 4. Contribution to the fourth-order momeatP(a). Top  and scaling of the solar wind bulk plasma parameters.
panel, a linear plot; bottom panel, a log-log plot. Notation is the
same as in Fig. 3. 3. The underlying Gaussian distribution of velocity fluctuations

The problem of selecting appropriate distribution of the
paramete3 among possible ones was recently addressed in
Ref.[12]. A specific model based on the assumption that the
velocity fluctuationu follows normal distribution with zero

fourth-order moment shown in Fig. 4 do not match that of
the experimental curve for th, =690 flow. We note that
the best fit is achieved fa® close to the theoretical value 3

but this does not significantly improve overlapping of themean and variancewas developed. The result is that a class

peaks with the data points. . o ; -
One naturally expects that a better correspondence to trff underlying distributions of can be encoded in the func

experiment may be achieved by an accounting for small-fzon p=p(u), and the marginal distribution is found to be
scale interactions via turbulent viscosftertain nonlinearity

2
in the first term on the rhs of E¢2)] as it implies a damping P(a)= Jw p _ [u(B)] d_u 2
of the large events, i.e., less pronounced enhancement of the (@)=C(s) 0 dBP(a| )ex 252 ||dB|’ (25
tails of P(a).

It should be noted that the idea to describe turbulencguhereu(p) is the inverse function. Note that only afso-

intermittency via averaging of the Gaussian distribution ovelyte value of u contributes to this probability distribution.
log normally distributed variance of some intermittent vari- particularly, the exponential dependence
able was proposed a long time ago by Castaing, Gagne, and

Hopfinger[14], B(u)=exd +ul, (26)
2
<|ni) features the log-normal distribution ¢ so that Eq.(25)
P(x) = °°d P Mo —x21(262) leads to Eq(22) used in Ref[5], while they? distribution of
=58 06 " ex 2 : order 1 is recovered with
0J0 2s;
(23
B(u)=u?. (27)

where x is a variable under study. Below, we apply this

model to the Lagrangian acceleratiots a. In general, this model is relevant wh@tu) is a monotonic
In technical terms, the difference from the Castaing log-Borel function of the stochastic variabler mapping

normal model is that in Eq22) the inversesquare of the [—%,%]>u to[0]> B, and allows one to rule out some
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ad hoc distributions of 8 as well as to make appropriate rapidly, the autocorrelation functions cross zero at about
generalizations of botly? and log-normal distributions of =0.06T, , and the cross correlation functions are approxi-

the parametep. mately zero.
Below, we develop a possible dynamical foundation of the We note that the fitted value of the above intermittency
above model. parameten, (\3=0.115+0.01) is very close to $#=1/3,
The stationary distributiofi25) with (u)=exd *u] can  with the values®=3 in Eq.(22) interpreted as the number of
be associated to the Langevin equation of the fo1] independent random variables in three-dimensional space at
the Kolmogorov scale. If this is not due to a coincidence, the
da=yF(a)+e®L(t), (28)  intermittency parametex, approaches simply the inverse of

the effective space dimension numlakr

where we denote = F u/2, u follows Gaussian distribution
with zero mean, and we takg= const to simplify the con- No=1/, (30
sideration.

In general, we adopt a viewpoint that statistical propertiesi= 3, for high-Reynolds-number turbulent flows.
of the acceleratiom are associated with velocity fluctuation  The above connection to the MRW model and very slow
statistics due to the well-known Heisenberg-Yaglom theorydecay of the correlations of the absolute values of accelera-
This theory predicts the following scaling of a component oftion components indicate relevance of the specific represen-

the acceleration variance: tation (28), with very slow varyingu|, in the description of
B intermittency. In fact, due to the experimen6] the La-
(a2)=agu¥2y V2 372 (29 grangian velocity auto correlation functionu(t)u(t

+7))/{u?) decays almost exponentially but very slowly, to

whereu is the rms velocityl is the integral scale length, and vanish onIy for7>3T,, where the integral time scalg,

ao is the Kolmogorov constant. This long-standing universal =2.2<10 * s, which is two orders of rrjagmtude bigger than
—3/2 the Kolmogorov time scale,=2.0x10"* s, R, =740, and
u*“ scaling was confirmed by the recent Lagrangian expenffhe mean velocity is about 10% of the rms velocity.

ments[17] to a very high accuracy, for about seven orders o (iii) Due to the well- known Kolmogorov power-law scal-
magnitude in the acceleration variance, or two orders of the lationship bet 4y th tatiof28
rms velocity, atR,>500. At lower Reynolds numberg, 't')qg {r?oi;;%rzso;pasir\:vee?:‘s%?t (l)Jf us?nrgert)kr]eesfez;sg#incin
<500, it appeared that the Heisenberg-Yaglom scaling si

bp g-1ag 989 with In e being normally distributed due to the refined Kol-

nificantly deviates from the experimental data due to the"
y P mogorov 1962 theory. Here, denotes the stochastic energy

emerging dependence af, on R, (the acceleration is in- di i : i reated the L
creasingly coupled to large scales of the flow at low Rey- issipation rate per unit mass treated in the Lagrangian
framework. From this point of view, one can identify

nolds numbers

We note also that in the Sawford model the Langevin
equation(10) for a includes velocity fluctuations and the w=glne, (3D
variance of the velocity distribution.

Below, we outline a relationship of the modé8) to whereg is a constant. This means that the stochastic dynam-
some recent approaches in studying the intermittency. ics of the logarithm of the energy dissipation is independent,

(i) The form of the last term in Eq28), in whichw can ~ and it influences the acceleration dynamics specifically
be viewed as a Gaussian process: w(t), independent of through the intensity of driving stochastic force in E28).
the white noiseL(t), strikingly resembles that involved in Stationary normal distribution ob can be in turn derived
the recently developed log-infinitely divisible multifractal from the Fokker-Planck equation associated with the Lange-
random walks(MRW) model by Muzy and Bacry25], a  Vin equation of a linear form,
continuous extension of discrete cascades.

(i) The driving force amplitude of the form*(®), with an dw=0o+gro+9g,L(1), (32)
ultraslow decaying correlation functiofw(t) w(t+ 7))=
—\3In[#/T,], 7<T_, in the Langevin-type equation has been whereg; are constants. This equation is in an agreement with
recently considered by Mordast al.[19]; T, stands for the the recent results of Eulerighotwire anemometgistudy of
Lagrangian integral time. The results of this model have beethe interaction between velocity increments and normalized
found in a very good agreement with the experimentally ob-energy dissipation rate by Renner, Peinke, and Friedrich
served very slow decay of the equal-position time autocorref27]. Particularly, they found that an exponential dependence
lation of the fluid particle velocity increment magnitude in of the diffusion coefficient on the logarithmic energy dissi-
time |A ,u;| for each componer{tzery much similar to MRW  pation in the Fokker-Planck equation for the velocity incre-
mode) attributed to the intermittency of Lagrangian trajec- ments in space is in a very good agreement with the experi-
tories in the developed turbulent flow. Also, very slow decaymental data. We note that Ed32) does not imply a
was observed for the cross correlation of the magnitudes dbgarithmic decay of the Lagrangian correlation function
the acceleration components. Both the dynamical correlaéw(t)w(t+ 7)) proposed in Ref.19]. This may be attributed
tions were found to vanish only for>3T, , while the dy- to the well-known difference between the Euleriéixed
namical correlations of the full signed entities,u;, decay probe and Lagrangiaritrajectory frameworks.
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(iv) For the choiceB(u)=exdu] corresponding to the P(x,t) =t~ *P(xt™ “0), (36)
log-normal distribution of3, using Eq.(28) one can derive
the stationary probability density function of the fof?] wherex denotes fluctuating plasma parameter apds the

scaling index. The valuexy=1/2 corresponds to a self-
similar Brownian walk with Gaussian probability density
functions at all time scales. The fitted valag=0.41 corre-
sponds to a single non-Gaussian distributiBg(x), to
whereg(u) is a probability density function ai. Hence the ~ which the observed distributions of some four plasma param-

P(a)=£;du C(u)exp{ln[g(u)]—e“a?/2}, (33

joint probability density function can be written as eters collapse under the scaling=xt™“.
The Langevin equation of this model assumes only addi-
P(a,u)=C(u)exp{In[g(u)]—e"a?/2}. (34  tive noise, and in such an ansatz it was found to be

Such a form of the distribution, containing specifically the dx=D1(x)+Dy(x) n(t), (37)
double exponent, resembles the “universal” distribution of
fluctuations(Gumbel function whereD; andD, are of the form

P(x)=co exrci(y—e)], y=cy(x—cg), (39 D4 ()= + /gxl_a(;l/z, 39

0

where c; are constant, recently considered by Chapman,
Rowlands, and Watkin28] (see also references thergial- D,(X)=[bg(1—tagt)— ao]xl—agl, (39

lowing the work by Portelli, Holdsworth, and Pintd29].

They used an apparently different approaoht related to a  a,,b, are constants and®, is intensity of thes-correlated

Langevin-type equation for the acceleration studied in ouGaussian-white additive noisgt), (n(t))=0. By construc-

papej based on the multifractal-type energy cascade @hd tion, this specified form of the dynamical equation ensures

or log normal(Kolmogorov 1962 theoryunderlying distri-  that the corresponding Fokker-Planck equation

bution for the energy dissipation rate at fixed level. They

pointed out a good agreement of sufx) with experimen- HP(x,t)= ﬁx[aoxl’“51P+ boxzf”’alaxP] (40

tal data, wherex denotes a fluctuating entity observed in a

variety of model correlated systems, such as turbulence, fohas the general solutioR(x,t), which exhibits the scaling

est fires, and sandpiles. The result of this approach meet86). The fitted values areag/bo=2, by=10, and a,*

ours and we consider it as an alternative way to derive the=-2.44. The rescaled distributioR¢(x) corresponding to

characteristic probability measure of fluctuations; wgitu) Eq. (40) is characterized by power-law tails truncated by

taken to be ay? (respectively, Gaussiardensity function, stretched exponential with a good fit to the tails of the ex-

one obtains, up to a preexponential factor and constantperimental distribution, but itlivergesat the origin,x,— 0.

P(u)~exp(—u—exdu]) {P(u)~exp(-u’—exgu])}. Thus To sum up, we point out that this diffusion model uses the

we conclude that the universal distributi¢85) can be de- generalized self-similarity principle resembling that used in

rived also within the general framework proposed in Ref.the Eulerian description of the energy cascade in the devel-

[12] that reflects a universal character of the underlyitg oped three-dimensional fluid turbulence and appears to be

distribution[4]. valid only asymptotically for large values of the variable,
We note that although successful in describing the obwith the fitted parameter value being abe=0.41.

served statistics of Lagrangian acceleration, with a few

simple hypotheses and one fitting parameter, the one- C. Laval-Dubrulle-Nazarenko model

dimensional Langevin RIN modelgl)—(5) and (25—(28)

suffer from the lack of physical interpretation in the context

of the three-dimensional Navier-Stokes equation.

The Navier-Stokes equation based approach to describe
statistical properties of small-scale velocity increments, both

In summary, we have presented a class of mo@@#s— I the Eulerian and Lagrangian framework, was developed in

(28) using the basic assumption that the paramgteepends Much detail by Laval, Dubrulle, and Nazarenkes]; see
on normally distributed velocity fluctuations. This class has2!SC recent wor{24]. This approach is based on featuring

been found to incorporate the previous RIN models in a uninonlocal interactions between well separated large and small

fied way, with the dependeng(u) required to be dmono- scales, elongated triads, and is referred to as the RDT ap-
tonic) Bo,rel function of the stochastic variable proach. Decomposition of velocities into large- and small-
scale parts was made by introducing a certain spatial filter of

a cutoff type. Within the framework of this approach, a three-
dimensional Langevin model of the developed turbulence
Another interesting model developed recently by Hnatwas proposed.

Chapman, and Rowland&2] to describe the observed time  In its one-dimensional version, the toy model of the La-
series of the solar wind bulk plasma parameters is based ggrangian turbulence naturally implies a nonlinear Langevin-
the construction of Fokker-Planck equation for which thetype equation for a component of the small-scale velocity
probability density function obeys the following one- increments in time(in the zero time-scale limit it corre-
parametric model-independent rescaling: sponds to the accelerati@nof fluid particle [23],

B. Hnat-Chapman-Rowlands model
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da=(é—rvkdato, . (41) Statistical properties of all the components of the no&es
and o, were studied numerically for decaying turbulence
This equation is a Lagrangian description in the scale spac&nd reveal rich and complex behavior, in the laboratory
in the reference frame comoving with a wave number packefframe.

Here, As a first step in the one-dimensional case, these noises
were modeled in the Lagrangian frame by the coupled
b= \/m (42) S-correlated Gaussian-white noiges],
stands for the turbulent viscosity introduced to describe (E(1))=0, (&M)E&(t'))y=2Ds(t—t"),

small-scale interactions;, is kinematic viscosityB is con-
stant,k is wave numbefd;k= — k¢, k(0)=k,, to model the

RDT stretching effect in one-dimensional chseando, are (0.(1))=0, (o (Yo, (t)=2as(t-t"),
multiplicative and additive noises associated with the veloc- (46)
ity derivative tensor and forcing of small scales by large L o

scales(the energy transfer from large to small scalag- (€M, ())=2ra(t—1"),

spectively.

We refer to the mode(41) as the one-dimensional LDN \yhereD, «, and\ are parameters depending on scale via

model of the developed Lagrangian turbulence. This toy  The stationary solution of the Fokker-Planck equation
model can also be viewed as a passive scalar in a compresgssociated with Eq41) with the noiseg46),
ible one-dimensional flow.

The noises, one-dimensional versions of which appear in
Eq. (41), are projections related to the large-scale velocities  9;P(a,t)=d,(vk?P) +Dda(adaP) —Nd,(ad,P)
U; and small-scale velocitias; of the flow as follows23]:

—\d%(aP)+ ad?P, (47)
. 2k .. .
= P(ku)_u , (43 s given by[23]
P Ko 44 P(a)=C Fd —vky—Dy A (48)
—— — a)=Cex —,
gL=0 kz( ), (44 i Dy?—2\y+a
oi=4d;(U;Uj—U;U;+u;U; = U;u), (45  whereC is a normalization constant and six parameters can

be used to fit the experimental data. This model specifies the

where the hat denotes Gabor transformafi®® and the bar one-dimensional LDN mode(41), and we refer to this
stands for the spatial cutoff retaining the large-scale partmodel as the LDN model with5-correlated noisesdLDN
One can see that the noises are related to the velocity fluenode).
tuations and the additive noise contains interaction terms be- The Langevin equation containing both thecorrelated
tween the large- and small-scale dynamics. Gaussian-white multiplicative and additive noises was stud-

This gives support to the idea that the intermittency isied in detail by Nakad31] (see also references thereloy
caused also by some nonlocal interactions within the inertialising the associated Fokker-Planck equation. The dLDN
range and not merely by small scales. We remark that onmodel(41) extends Nakao’s set up by incorporating two new
would also like to know the role of the dissipative scale infeaturesi(i) the nonlinearity controlled b in Eq. (42) and
this integrated picture. (ii) the coupling of the noises controlled hyin Eq. (46).

Noisy character of the entitig€3) and (44) may not be It is interesting to note that the RDT approach qualita-
seen as a consequence of the Navier-Stokes equation, whitikely resembles the model studied by Kuramoto and Nakao
does not contain external random forces at the characteristj82], a system of spatially distributed chaotic elements
time scale. In the RDT approaclj,and o, are treated as driven by a field produced by nonlocal coupling, which is
independent stochastic processes entering the small-scale dypatially long-wave and temporally irregular. Such systems,
namics(41) owing to the fact that the large-scale dynamics isin which the multiplicative noise is the local Lyapunov ex-
weakly affected by small scaléwhich corresponds to a di- ponent fluctuating randomly due to the chaotic motion of the
rect energy cascade in the three-dimensional fflamd thus elements, show power-law correlations, intermittency, and
can be viewed as a given noise. structure functions similar to that of the developed fluid tur-

The relationg43) and(44) can be used to trace back the bulence.
origin of the multiplicative and additive noises entering vari- In the following section, we make a comparison of the
ous surrogate Langevin models of the developed turbulenc&®IN model (1)—(5) with the Laval-Dubrulle-Nazarenko
and to provide important information on the dynamics undermodel (41), as well as its particular case, the dLDN model
lying the intermittency. (48).
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ll. COMPARISON OF THE SIMPLE RIN and vorticity and responsible for the skewness, which is
AND LDN MODELS however quite small in homogeneous isotropic turbulent
flows.

A. A qualitative comparison . .
g P The use of the constant turbulent viscosity vy makes a

A direct comparison of the Langevin equatiof® and  good approximation in describing intermittency corrections
(41) of the two models suggests the following evident iden-since both the constant and turbulent viscosities were found
tifications: to produce corrections which are of the same level as the

DNS result[23]. In the physical context, this means that the
— _ 2 i 1
yF(@)=(é-rk9a, ol=o,. (49) small-scale interactions are not of much importance in the

Hence the additive noises can be made identical to each otheynamics underlying the intermittency. This justifies the use

by puttingo?= «. Further, in the case of a linear drift force, ©! the approximation of linear fo.rci.ndf(a)z'—a in the
F(a)=—a, and constant viscosity;= vo, we can identify simple RIN model. We note that this is also in an agreement

i — K2 with both the experimental results for the Lagrangian veloc-
the remaining parameters;=rok™—¢, so that we get ity autocorrelation function by Mordant, Metg, Mi?:hel, and
B=ylo?=(vok’— &)l . (50) Pinton[26] and the recent experimental Eulerian results for
the spatial velocity increments by Renner, Peinke, and
This relation implies that the paramef@rcan be viewed as a Friedrich[27].
stochastic variable with a nonzero mean due to the stochastic Alternatively, one can consider aore generalRIN
nature of¢ assumed in the LDN model. This is in agreementmodel characterized by the presence &fcorrelated
with the simple RIN model, the defining feature of which is Gaussian-white additive anmhultiplicative noises and fluc-
just that the fluctuating part o8 follows some statistical tuating intensities of both the noises. This will lead to a
distribution. model similar to the dLDN model41) in which the noise

In the dLDN model(41)—(48), both the additive and mul- intensitiesD and « and the coupling parameter are as-
tiplicative noises are takef correlateddue to Eq(46). This  sumed to fluctuate at a large time scale.
is in a sharp contrast to the assumption tBatan be taken In summary, we found that the one-dimensional RIN
constant to derive the stationary solutié®) which is the  model(1)—(5) can be viewed as a particular case of the one-
foundation of the simple RIN model. More precisely, the dimensional LDN mode(41) of turbulence which is based
solution in the form(6) can be obtained as the lowest-orderon the RDT approach by Laval, Dubrulle, and Nazarenko
approximation if3 is slow varying in time as compared to a [23]. It should be stressed that while both the toy models
typical time scale associated with the additive nadi¢® (the  assume introduction of some external statistics—the cor-
adiabatic approximation This suggests that the multiplica- relator of L(t) and the distributiorf(3) in Eq. (1) and the
tive noise& should be taken as a sufficiently slow varying correlators of ando, in Eq. (41)—the LDN model is char-
stochastic variable, to meet the ansatz used in the RIMcterized by a solid foundation and reveals a rich structure as
model. compared to the RIN model.

The detailed numerical analysis of the noi§23| for the In the first approximation, i.e.\=0, v,=v, and 7
turbulent flow at relatively low Reynolds numbers,<5R, >, the class of RIN models is in a quite good qualitative
<80, shows that the autocorrelation of the multiplicative correspondence with the LDN mod@tl) and differs from
noise ¢ decays much sloweiby about one order of magni- the specific dLDN mode{41)—(48) by the only fact that in
tude than that of the additive noise, . Hence a typical the latter one assumes=r7, and introduces @-correlated
time scale at whiclt varies, 7;, is considerably bigger than multiplicative noise. Hence the different resulting probability
that, 7., of o, . Also, the cross correlation between the two density functions for the acceleration of fluid particle in the
noises was found to be rather weak<D and\<a, by  developed turbulent flow, Eq$19)—(22) and (48), respec-
about two orders of magnitude in the longitudinal case andively.
A=0 in the transverse case. Altogether this allows one to
introduce the time-scale hierarchy> 7, and to decouple
the noises, i.e., to puk=0, which justifies the adiabatic
approximation and the one-dimensional RIN model. With the above result of the qualitative comparison, we

The presence of the long-time correlated amplited€ are led to make a more detailed, quantitative comparison of
and the short-time correlated directional paft) of the sto- the dLDN model(41)—(48) and the simple RIN modéfl)—
chastic driving force in the Langevin-type equation consid-(5) with the underlyingy? or log-normal distribution of, in
ered by Mordanet al.[19] also supports the above adiabatic order to determine which approximatiom,,=7, or 7,
approximation(two well separated time scales in the single> 7, is better when used to describe the Lagrangian statis-
additive stochastic force, in the Lagrangian framewoAs tical properties of the developed turbulent flow. We take the
usual, thes-correlated noise originates from taking the limit recent high precision Lagrangian experimental daf 18
of zero correlation time in a system with the smallest finiteon statistics of fluid particle acceleration in the developed
noise correlation time. turbulent flow as a testbed. Actually we follow the remark

On the contrary, in the dLDN model one assumes thenade in Ref[23] that thes approximation of¢ is debatable
approximation of comparable time scales=7,, and re- and the performance of such a model should be further ex-
tains the coupling parametgrrelating small-scale stretching amined in the future.

B. A quantitative comparison
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In Ref. [23], explicit analytic evaluation of the distribu-
tion (48) is given for the particular case= vy, while the
general case is treated in termsddh P(a)/dawhen fitting to
the numerical RDT data{4<a<4). In order to make fits
to the experimental probability density functié¥{a) and to
the contribution to the fourth-order momeat,P(a), cover-
ing wide range of the normalized acceleration60<a

<60, one needs an analytic or numerical evaluation of the

rhs of Eqg.(48). To this end, we have calculatexactlythe

PHYSICAL REVIEW E 69, 026305 (2004

shall keepk and« in an explicit way in the formulas below,
to provide a general representation.

We start by considering two important particular cases of
the dLDN probability density functior48): a constant vis-
cosity v,.=vy, and a dominating turbulent viscosity;,
=B|al/k.

1. Constant viscosity

At A =0 (symmetric caseandB=0, i.e., constant viscos-

integral appearing in the dLDN probability density function ity v.= vy, using Eq.(A1) in Eq. (48) we get(cf. Ref.[23])

(48) (see the Appendix

The x? and log-normal distribution-based probability den-

sity functions(19) and(22) are both realizations of the RIN
model and contain one fitting parametag, and s, respec-

P(a)=C(Da’+a)~ (1 okID)2, (54)

whereC is normalization constant. This distribution is of a

tively. The result of comparison of fitting qualities of these power-law-type and we can compare it with the reguf),

functions[11], with a,=39.0 ands=3.0, is that the prob-
ability density function(22) provides a better fit to the ex-
perimental datd18] on low-probability tails and the contri-

bution to the kurtosis summarizing the peakedness of

distribution. However, since the integral in E@2) cannot
be evaluated analytically we will use the distributi),

which provides a better fit to the central region when dealin

with analytic expressions.
The dLDN probability density functio48) contains six

parameters which can be used for a fitting, the multiplicativ

noise intensityD, the additive noise intensity, the coupling

\ between the multiplicative and additive noises, the turbu

lent viscosity parameteB, the parameter,, and the wave
number parametek.
The parameter kFor a fitting, we can puk=1 without

loss of generality since it can be absorbed by the redefinitio

of the parameters, andB,

vok?— vy, Bk—B. (51)

The parametew. The structure of the rhs of E¢48) is

d

which contains a Gaussian truncation of similar power-law
tails.
We note that with the identifications

D/a=2(q—1), (1+wvok?D)/2=1/(gq—1), (55

the distribution(54) coincides with that obtained in the con-

g1ext of generalized statistics with the underlyig distribu-

tion [6]. Particularly, forq=3/2 (n=3, By=3) used there, it
ollows thatD/a=1 andvyk?=3.
It is highly remarkable to note that the two different ap-

proaches yield stationary distribution of exactly the same

power law form for certain identification of the parameter’s;
namely, the Gaussian-whité-correlated multiplicative and
additive noises with constant intensities and a linear drift
erm imply P(a) of the same form as that obtained in the

IN model with y? distributed, the ratio of the drift coef-
ficient to the intensity of the Gaussian-whitecorrelated
additive noise. It follows that the effect of? distributed3
mimics the presence of the multiplicative noise, and vice
versa, in this particular case.

such that only four parameters out of five can be used for a The power-law distributiori54) can be used to get a good

fitting. For example, one can put=1 without loss of gen-
erality by using the following redefinitions,

vola—vy, Bla—B, D/a—D, NMa—N\. (52

Alternatively, one can pub=1 provided the redefinitions

vo/D—vy, BID—B, a/D—a, NID—\. (53
The parameter\. Due to Eq. (A5) we have c
=—iJDa—\?, which is purly imaginary foDa>\? and
real forDa<\2. Forc=0, i.e.,Da=\?, the integralA3) is
finite since divergenE(c) andF(—c) defined by Eq(A4)
cancel each other. Since the paramateneasuring the cou-

fit of the Lagrangian experiment®I(a) data for small accel-
erations, e.g., with the normalized values ranging from
—10to 10, but in contrast to the Gaussian truncated(d8e
it exhibits strong deviations for larga, and for (1
+ vok?/D)/2<2 leads to a divergent fourth-order moment,
which is known to be finit¢11,17,1Q.

Introducing the noise intensity ratio parameter

b={D/«a (56)
and denoting
k=—(1+vok?/D)/2, (57)

pling between the noises is assumed to be much smaller thave can rewrite the normalized distributidb4) as follows

both the noise intensitie® and « [23], we putDa>\? in
our subsequent analysis. Moreover, the parameteyspon-

sible for the skewness can be set to zero since we will be
interested, as a first step, in statistically isotropic and homo-
geneous turbulent flows, for which the experimental distribu-

tion P(a) exhibits very small skewne$47].
Thus, we can use three redefined free parametgrs,
andD for a fitting, withk=1, =1, and\ =0. However, we

(cf. Ref.[31]):
(1+b?a?)«

2.E 13 b2 ,
201 K’E’E,

P(a)= (58

where ,F, is the hypergeometric function. In accord to the
analysis made by Nakd@®1], for smalladditive noise inten-
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sity, i.e., atb>1, this distribution exhibits a pronounced pla- same order of magnitude. These two particular cases lead to
teau near the origin, and theh order momentstruncated  different final expressions for the distributids4) and(62),
by reflective walls at some fixdd|, behave as a power bf  respectively, obtained above.
In the general case, using Eq63) and(64) in Eq. (A3)
(a")~ b~ "k for n> vok?/D, (590  after some algebra we obtain the following expression for the
dLDN probability density functior(48), at A =0:

(aMy~b~" for n<wyk?D, (60)
Ce Vtkle
wheren>0. Thus, the truncated moments behave as P(a)=———
(Da2+ a)??
n\__ —H(n)
(@a"y~Gp+G;b , (61 kd, /(2D?)

4D%(B*Daa’+k?(Dkvi+d1y)?)
whereGg ; are some constants and the functidé(n) is zero X 612, ~. 2
at vok?=0 and monotonically saturates toat big vok?. It d;k*(Da"+a)
should be stressed that such a behavior of the moments for (65)
small additive noise intensity is not specific to the distribu-
tion (58) since it gives divergent moments but arises aftefyhere C is normalization constant; is given in Eq.(64)
some truncation of it, for example, by means of reflectiveanq,, is given by Eq.(42).

walls or nonlinearity. Particularly, a truncation of the power- |t can be easily checked that E@5) reduces to Eq(54)
law tails of the distribution naturally arises when accountingat B=0, while to verify that it reduces to Eq62) at v,

for the turbulent viscosity to which we turn below. =BJa|/k requires the use of the fact thag becomes purly
o i _ imaginary, returning back to the logarithmic representation
2. Dominating turbulent viscosity due to Eq.(A4), and the identity(A8).

At A=0 (symmetric casg for the case of dominating The distribution(65) is characterized by the power-law
turbulent viscosity,»,=Bl|a|/k, using Eq.(A2) we get for tails, which are(i) exponentially truncated an@) enhanced

positive and negativa, respectively, by the power-law part of the numerator, with both the effects
being solely related to the nonzero turbulent viscosity coef-

C o™ Bka/D +Bka'D "3 Zarctan[0/ @) 2] ficient B responsible for a nonlinear small-scale dynamics.
P(a)= , (62 We conclude that to provide an acceptable fit of the dLDN

2 1/2
(Da*+a) model prediction to the Lagrangian experimental ddi8]

. o nonlinear small-scale interactions encoded in the turbulent
whereC is normalization constant. One can see that, as exyi : ial
ected, the power-law dependence is of a similar form as inISCOSIty vy are essential. . . .

b ’ Sample fit of the dLDN probability density functidp(a)

Eq. (54) but it is exponentially truncated at bjg| owing to . G i i
the turbulent viscosity term. This distribution is similar to the given b}' Eq.(65) and cont'rlbuluon to the fourth ordgr mo
ment,a*P(a), are shown in Figs. 5 and 6, respectively. In

Gaussian truncated or{@9) but the truncation is of an ex- the numerical fit, we have put, in accord to the redefinitions

ponential type and there is some symmetric enhancement ? 2), the wave number parameter 1 and the additive noise

the tails supplied by the arctan term. . . o . o
Now we turn to the general case, which provides a “nkmtensr[y parametew=1 in Eq. (65 and fitted the remaining
. h - three parameters,, D, and B. One can observe a good
between the two particular cases=v, and »,=B|a|/k, ih th , | d Particularly. th
considered above. agreement with the experlme_nt? ata. Particularly, the
dLDN contribution to the kurtosia®P(a) plotted in Fig. 6
does peak at the same points as the experimental ¢pore
_ sitions of the peaks depend mainly B). The central part of
At A =0 (symmetric casg from Egs.(A5)—(A7) we have  the dLDN distribution shown in the bottom panel of Fig. 5
fits the experiment to a higher accuracy as compared with the

3. The general symmetric case

c=—idp, c;=idid,, cp=kdy, (63)  |og-normal model22) but yet depart from that of the experi-
mental curve. This departure can be attributed to the approxi-
where we have denoted mation of §-correlated multiplicative noise used in the dLDN
> model (see discussion in Sec. Il abgve
d;=VD(Dk“vg—B%a), dp= Da. (64) Having the general form of the dLDN distribution evalu-
_ ) ) _ ated explicitly, Eq.(65), one can derive higher acceleration
Note thatc is purly imaginary and the rhs of E4A3) is  yomentgan), n=2,4, . ... Theassociated integrals are not

much simplified yielding a symmetric distribution with re- 4 vtically tractable and can be evaluated numerically. We
spect toa— —a. The entityc, defined by Eq(A7) may be il consider these in Sec. IV below.

either real (for Dk?v5>B?a) or purly imaginary (for In the most general case\#0) the resultingP(a) is

Dk?v§<B?). In particular, for the case of constant viscos- given due to an exponential of the exact inted8) which
ity, v5>B2, it is real while for the case of dominating tur- we do not represent here for brevity.

bulent part of the viscosityB?> vﬁ, it is purly imaginary, To sum up, we have made an important step forward with
provided that the intensities of noisd3,and «, are of the the dLDN model by having calculateB(a) exactly. We
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FIG. 5. Acceleration probability density functiodd(a). Dots:
experimental data &R, =690 by Crawford, Mordant, and Boden-
schatz [18]. Dashed line: stretched exponential fii3), b;
=0.513,b,=0.563,b;=1.600,C=0.733. Dot-dashed line: Beck
log-normal model (22), s=3.0. Solid line: Laval-Dubrulle-
Nazarenko model(65), k=1, a=1, D=1.130, B=0.163, v,
=2.631,C=1.805.x=a/(a?)*? denotes normalized acceleration.
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S-correlated multiplicative noise and the nonlineafiiyrbu-

lent viscosity in the model Langevin equation was found to
be of much importance. The considered RIN models provide
less but yet acceptable accuracy of the low-probability tails
although they employ only one free parameter, which can be
fixed by certain phenomenological arguments, as compared
to the dLDN model, which contains four free parameters.
However, we stress that in contrast to the LDN model the
considered RIN models have a meager support from the tur-
bulence dynamics.

IV. CONDITIONAL PROBABILITY DENSITY FUNCTION
OF THE ACCELERATION

In the very recent papd20] new experimental data on
the conditional probability density function of the transverse
acceleration,P(alu), have been reported. In general, this
representation is in agreement with the proposed idea that
velocity fluctuationsu are directly involved in the stochastic
acceleration dynamidsl 2] represented in Sec. Il A 3.

Also, the observed conditional acceleration component
variance has been found to be in a good agreement with the
Sawfordet al. scaling relation(see Ref[20] and references
therein

(a?|uy~ub, (66)

obtained to a leading order in the same compowemiot to
be confused with the rms velocity=(u?)/?).

The experimental data reveal highly non-Gaussian,
stretched exponential character Bfaju), very similar to
that of P(a), for fixed u ranging from zero up to three rms

have shown that the dLDN model is capable to reproduce theelocity u [20] as opposed to the theoretical result that
recent Lagrangian experimental data on the acceleration st&(a|u) is a Gaussian im due to the simple RIN modéb),
tistics to a good accuracy. Particularly, we found that thewith arbitrary 8= g(u), or due to the more general RIN
predicted fourth-order moment density function does peak amodel(33). Similarity between the experimenta(alu) and

the same value of acceleratida)/(a?)1?~=10.2, as the ex-

P(a) suggests that they share the process underlying the

perimental curve, in contrast to the predictions of the othefluctuations. Below, we address this important problem
considered stochastic models. The presence of theithin the framework of the RIN approach.

1 = 7
;
L ok .'.
0.8 ; )
o )'i )
0.6 .
"‘x ..!'l,"
” . 2 . .l,'l
0.4 o
lo% 5
0.2~
. ,-;;"
beZ "~
-40 -20

» o

FIG. 6. Contribution to fourth-order momeafP(a). Notation
is the same as in Fig. 5.

The idea is that the stretched exponential form of the tails
of the observed conditional distributid®(a|u) could be as-
signed solely to small time scales, while the marginal prob-
ability distribution P(a) is developed fronP(alu) at large
time scales, in accord to the two-time-scale dynamics.

This requires some modification in the simple RIN mod-
els. The sole use of thé-correlated Gaussian-white additive
noise, with fluctuating intensity depending opand a linear
force F(a) = —a, with fluctuatingy= y(u), is not capable
to explain the stretching in the observedalu), as it im-
plies only Gaussian conditional probability density function
P(alu), for any fixedu.

However, it is known that accounting for tmaultiplica-
tive s-correlated Gaussian-white noise in the drift term of
Langevin equation implies stretched exponential tails.

Hence we can simply follow the dLDN ansatz as a con-
stitutive model(see Sec. Il Cusing the assumption that the
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FIG. 7. Conditional probability density functioR(alu) given FIG. 8. Conditional probability density functioR(alu) given

by Eq.(65) for a=¢€", k=1,D=1.130,B=0.163,v,=2.631. The by Eq.(65) for a=1,k=1,D=1.1%", B=0.163,r,=2.631. The
inner curveu=0. The outer curveu=3.x=a/(a?)”? denotes nor-  outer curve:u=0. The inner curveu= 3. x=a/(a?)*?2.
malized acceleration.

P(a|D(u),a,B,vg) with the increase ofi does not qualita-
additive noise intensityr appearing in the stationary prob- tively meet that observed in the experimef@§]. We note
ability distribution P(a|D,a,B,v,) given by Eq.(65) de- that an increase ob, i.e., stronger multiplicative noise, is
pends oru. generally understood as the pronounced increase of the rela-

Here, we put the parametar measuring coupling of the tive chance for a fluid particle to have higher accelerations as
noises to each other to zero ignoring thus the skewness egompared to low accelerations, due to the multiplicative ran-
fect, which is very small for both the experimena‘alu) dom process. This point of view is confirmed by Flg 8. Also,
and P(a) [17,20. This effect is nevertheless of much inter- for a completeness in Fig. 9 we represent sample dependen-
est since it is associated with the relationship betweesies of P(a|D,a,B,vo) on the parameterB and v, .
stretching and vorticity in a three-dimensional flow. More  Using the dLDN probability functiorP(a|D, a(u),B, vo)
important here is that it may imply additional stretching of one can computéa®ju) and compare the result with the
the tails as well[see\ dependent terms in EGA3)]. This
possible way to explain stretched exponential tails of the
observedP(a|u) can be considered elsewhere. ] /\

Following the arguments and techniques presented in Se
A3, the marginal probability distribution P(a) 0.001 }
=P(a|D,B, ) is obtained by integrating out in

P(alu)=P(alD, a(u).B,vg), 6n 07 //// \\\\

-7 | /
with an appropriate choice of the functiam(u), for ex- 10 / \ \

ample,a(u)=e¢", and some probability distribution af for / 1] \
example, a Gaussian one with zero mean. Note that onc -60  -40  -20
P(a|D,a(u),B,vy) is fitted to the experimental curves of the
conditionalP(a|u) there formally remains only one param-
eter to be fitted in the margind?(a), the variance of the
Gaussian distribution ad, i.e., the rms velocity.

The normalized conditional distributig®7) given by Eq.
(65 with a=e" is shown in Fig. 7, for four values
=0,1,2,3, and the other parameters fixed. One can obsena, / / \ \

L

o
N
o
NS
o

60

0.001

an increase of the variance with the increase ahd a good 0.00001

qualitative agreement with the experimental curfs|u) // / \ \\

[20]. We note that the velocity fluctuations are present only 1077 |
in the definition of the LDN additive nois@5) which can be N
viewed as a hint that only additive noise intensity essentially j \
depends onu. These results give an independent support tc -60  -40 20 0 20 40 0
the model represented in Sec. Il A 3. x

We have checked a different reasonable assumption that g, 9. Conditional probability density functioR(alu) given
the multiplicative noise intensity parametBr depends on py Eq. (65). Top panel:a=1, k=1, D=1.130, B=0.163%", v,
the velocity fluctuationdD=e" with the other parameters =2631 (the outer curveu=0; the inner curveu=2). Bottom
fixed. The result is shown in Fig. 8. One can observe thapanel: =1, k=1, D=1.130, B=0.163, v,=2.63%" (the outer
the change of the shape ofP(aju) defined as curve,u=0; the inner curveu=3). x=al/(a?.
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2-2f ‘ implies ~u®. This can be viewed as a signal for selecting a

different probability distribution ofu, such as that of a
stretched exponential form.

(i) In the present paper, we put the paramatewhich
measures the coupling between the multiplicative and addi-
tive noises in the dLDN model, to zero discarding thus skew-
ness effects in the predictdé?{alu) andP(a). This effect is

e /‘ of much interest to study in order to estimateusing the
1x2 T /././" fitting to Lagrangian experimental data on the longitudinal
1 component of acceleration with respect to the trajectary (

" W =0 by definition for the transverse component of accelera-

0 0.5 1 1.5 > 2.5 tion). Presumably it is small due to small skewness of both
u the observed®(alu) and P(a) for the measurec compo-
nent of acceleration18].

<a2| u>
= =
=3 o

FIG. 10. The normalized conditional acceleration variance (iii) Following the RIN h ted in thi it
(a?|u) as a function of normalized velocity fluctuationg(u)*/2 i) Foflowing the approach presented In this paper |

Boxes: the experimental data ofa?u)/(a®) [20], triangles: is of intg_rest t-o eyalgate the proposed averaging of the dLDN
(a?|u)/(a2|0) with P(alu) given by Eq.(65) for a=e"3, k=1, probability d|str|but|(_)n I_:>(a|D,a(_u),B,v0) given by Eq.
D=1.130,B=0.163, andv,=2.631. (65) over normally distributedi with « taken to bea=e".
This is equivalent to the averaging over log normally distrib-
uted a. A comparison of the resulting distribution with the
Lagrangian experimental data can be made elsewhere.

(iv) In the present paper we have not reviewed a recent
possibility for a fitting to the experimental datboxes. Al- work by Reynolds[g]. A comparison of t_he results of the
though with the fitted exponentiy=3, the resulttriangles _Reynolds model with that of the stochastic models proposed
exhibits a departure to the experiment; qualitatively the!" Refs. [5,6] can be found in the recent paper by Mordant
model implies a correct behavior of the conditional acc:elera—et al.[20].
tion variance.

To summarize, the observed stretched exponential form of APPENDIX: EXACT INTEGRALS
the conditional acceleration probability density function

P(alu) can be understood within the framework of the oot depend am used in calculating the definite integral

dLPN model (65) due to the effect of th_e mult_iplic_ative _entering the probability density functio@d8) are given be-
noise under the assumption that the additive noise intensity,

a depends on velocity fluctuations The alternative as-
sumption that the multiplicative noise intensity dependsion
seems not to be in a qualitative agreement with the shapes of
experimental curves at the different valueswoéxcept for f da

predicted scaling relatiori66) and the experimental data
[20]. A sample plot of a?|u) is shown in Fig. 10, where we
have used the exponential in the forr=e““ to provide

Exact indefinite integrals, up to a constant term which

At vi=ryg,

- Vokza._ Da+A\

u=0. The predicted conditional acceleration variat@agu) Da?—2\a+ «
with a=e"!o, uy=3, have been found in a good qualitative 5
agreement with the experimental curve. However, we ob- D+ ok 2
: ' ' =—————In[Da*—2\a+«]
serve a departure to the experimental data. 2D
. A vok? . Da—X\ AD)
V. DISCUSSION arctan -
DJDa—\2 JDa—\?

We conclude with a few remarks.
(i) It is interesting to note that a universal probability At »,=B|a|/k, for positive and negative, respectively,
density functionf (u) could be identified with the help of the

relation J TBka’—Da+\
a—
Da’-2\a+a
6 92
f,md““f(“) u>, (68) _ _Bka DZiZB)\kl a2 onas
=*D D7 n[Da at+al

stemming from a comparison of the Heisenberg-Yaglom 2
scaling relation29) and the scaling66), both recently con- + B(Da—2AT)k arctan Da-A
firmed by the experiments, where we assume that T D2 J/Da—\2 JDa—\?'
J”..du(a?u)f(u)~(a?). Obviously, the choice of a nor-

malized Gaussian probability density function with zero In the general case, we have obtained a cumbersome ex-
mean forf(u) does not lead to the above relation since itpression

(A2)
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f —pyk?a—Da+\
Da’-2\a+ta«a
Vtkz

= 1ID22)\+
—Tin[a aa]

k
=2 In[2Bka+ vk?]+F(c)+F(—c),

(A3)

where we have denoted

F(c) cak? D° [B2(\2+c\—Da)
C)= n CA—Da)a
2c,D?%c | CiCa(c—Da+n)
+c(D Vt2k2+ Cth)]] , (A4)

PHYSICAL REVIEW E69, 026305 (2004

c=—iyDa—\% v=\rvi+B2%?%k? (A5)
c1=B?(4\%+4ch?—3Dal—cDa)+D?(c+\)v2k?,
(AB)

c,=VB%(2\?+2c\ —Da)k?+ D?v3k*. (A7)

Some useful formulas used in verifying the lim@s-0 and
D—O0 are

arctanx=ii[ln(l—ix)—ln(lJrix)], (A8)

1
lim = In[1+Da?]=a?.

(A9)
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